Skip to main content

Deuterium Labeling Studies and Quantum Effects of Radicals in Solids

  • Chapter
  • First Online:
EPR of Free Radicals in Solids I

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 24))

  • 1065 Accesses

Abstract

Recent progress in deuterium (D or 2H) labeling studies of radicals in the solid state is reviewed. Emphasis is placed on quantum effects at low temperature. The high-resolution EPR (ESR) spectra of selectively D-labeled methyl radicals were radiolytically generated together with a hydrogen atom methyl radical pair in an Ar matrix at cryogenic temperatures. The methyl radical spectra are discussed in terms of nuclear spin-rotation couplings using a three-dimensional free quantum-rotor model. A hydrogen atom hydrogen molecule (H···H2) pair formation in Ar is discussed in terms of D-isotope effects on quantum mechanical tunneling reaction. The H2 molecule as a “quantum solid” for high-resolution EPR spectroscopy is presented. D-effects on zero-point vibrational energy (ZPVE) are presented in combination with Jahn-Teller (J-T) distortion of some chemically important radical cations of methane, tetramethylsilane, cyclohexane and related radical cations whose mother molecules have high symmetrical structures such as T d and D 3d .D-isotope effects on methyl group conformations are exemplified using selectively deuterated dimethylether and monofluoromethane radical cations; the experimental results were also interpreted in terms of ZPVE incorporated with the mass difference of the two hydrogen isotopes. Furthermore, a D-labeling study on bimolecular homolytic substitution (SH 2) reactions by methyl radical in solid methylsilane (CH3 SiH3) is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shiotani M (1987) ESR studies of radical cations. Magn Reson Rev 12:333–381

    CAS  Google Scholar 

  2. Lund A, Shiotani M (eds) (1991) Radical ionic systems: properties in condensed phases. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  3. Lindgren M, Shiotani M (1991) ESR studies of radical cations of cycloalkanes and saturated heterocycles. In: Lund A, Shiotani M (eds) Radical ionic systems: properties in condensed phases. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  4. Shiotani M, Lund A (1991) Deuterium labeling studies of cation radicals. In: Lund A, Shiotani M (eds) Radical ionic systems: properties in condensed phases. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  5. Shiotani M, Komaguchi K (1998) ESR studies on structural distortion and dynamics of saturated hydrocarbon radical cations: recent development. Houshasen Kagaku (Radiat Chem Jpn) 65:2–15

    Google Scholar 

  6. Shiotani M (1991) ESR. In: Tabata Y (ed) CRC handbook of radiation chemistry. CRC Press, Boca Raton, pp 139–144

    Google Scholar 

  7. Shiotani M, Yoshida H (1991) ESR of radical ions. In: Tabata Y (ed) CRC handbook of radiation chemistry. CRC Press, Boca Raton, pp 440–467

    Google Scholar 

  8. Shiotani M (1991) ESR spectra of free radicals generated by ionizing radiations. In: Tabata Y (ed) CRC handbook of radiation chemistry. CRC Press, Boca Raton, pp 544–567

    Google Scholar 

  9. Shiotani M, Lindgren M (1994) Radicals on surfaces formed by ionizing radiation. In: Lund A, Rhodes CJ (eds) Radicals on surfaces. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  10. Willard JE (1988) Chemical kinetics of small organic radicals in organic and rare gas matrices at cryogenic temperatures. In: Alfassi ZB (ed) Chemical kinetics of small organic radicals, vol IV. CRC Press, Boca Raton

    Google Scholar 

  11. Benderskii VA, Makarov DE, Wight CA (1994) Chemical dynamics at low temperatures, vol 8, Advances in chemical physics. Wiley, New York

    Google Scholar 

  12. Lund A, Shiotani M (eds) (2003) EPR of free radicals in solids. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  13. Lund A, Shiotani M, Shimada S (2011) Principles and applications of ESR spectroscopy. Springer, Dordrecht, pp 211–271

    Book  Google Scholar 

  14. Yamada T, Komaguchi K, Shiotani M, Benetis NP, Sϕrnes AR (1999) High resolution EPR and quantum effects on CH3 , CH2 D, CHD2 and CD3 radicals under argon-matrix isolation conditions. J Phys Chem A 103:4823–4829

    Article  CAS  Google Scholar 

  15. McConnell HM (1958) Free rotation in solids at 4.2°K. J Chem Phys 29:1422

    Article  CAS  Google Scholar 

  16. Freed JH (1965) Quantum effects of methyl-group rotations in magnetic resonance: ESR splittings and linewidths. J Chem Phys 43:1710–1720

    Article  CAS  Google Scholar 

  17. Clough S, Poldy F (1969) Study of tunneling rotation of methyl groups by electron spin resonance and electron nuclear double resonance. J Chem Phys 51:2076–2084

    Article  CAS  Google Scholar 

  18. Davidson RB, Miyagawa I (1970) ESR study of quantum tunneling of a methyl group: a simple tunneling model. J Chem Phys 52:1727–1732

    Article  CAS  Google Scholar 

  19. Clough S, Hill JR (1974) Temperature dependence of methyl group tunneling rotation frequency. J Phys C Solid State Phys 7:L20–L21

    Article  CAS  Google Scholar 

  20. Geoffroy M, Kispert LD, Hwang JS (1979) An ESR, ENDOR, and ELDOR study of tunneling rotation of a hindered methyl group in x-irradiated 2,2,5-trimethyl-1,3-dioxane-4,6-dione crystals. J Chem Phys 70:4238–4242

    Article  CAS  Google Scholar 

  21. Matsushita M, Momose T, Shida T (1990) Internal rotation of the methyl group in the radical cation of dimethyl ether. J Chem Phys 92:4749–4758

    Article  CAS  Google Scholar 

  22. Kubota S, Matsushita M, Shida T, Abu-Raqabah A, Symons MCR, Wyatt JL (1995) Internal rotation of the methyl groups in the t-butyl radical as studied by ESR. Bull Chem Soc Jpn 68:140–145

    Article  CAS  Google Scholar 

  23. Komaguchi K, Kumada T, Aratono Y, Miyazaki T (1997) Evaluation of the distance between the hydrogen atom and hydrogen molecule in the tunneling reaction HD + D → H + D2 in an argon matrix at 20 K. Chem Phys Lett 268:493–497

    Article  CAS  Google Scholar 

  24. Miyazaki T, Yamamoto K, Arai J (1994) Effect of rotational quantum states (J = 0, 1) of matrix H2 molecules on ESR spectra of radicals at 4.2 K. Chem Phys Lett 219:405–408

    Article  CAS  Google Scholar 

  25. Silvera IF (1980) The solid molecular hydrogens in the condensed phase: fundamentals and static properties. Rev Mod Phys 52:393–452

    Article  CAS  Google Scholar 

  26. Shiotani M, Isamoto N, Hayashi M, Fängström T, Lunell S (2000) Deuterium isotope effects on rotation of methyl hydrogens: a study of the dimethyl ether radical cation by ESR spectroscopy and ab initio and density functional theory. J Am Chem Soc 122:12281–12288

    Article  CAS  Google Scholar 

  27. Komaguchi K, Shiotani M (1997) Asymmetrically distorted structure, selective bond length alternation, and reactions of radical cations of silacyclohexanes: an ESR and ab-initio MO study. J Phys Chem 101:6983–6990

    Article  CAS  Google Scholar 

  28. Wang P, Shiotani M, Lunell S (1998) Structure and dynamics of radical cations of selectively deuteriated cyclohexanes: an ESR and ab initio study. Chem Phys Lett 292:110–114

    Article  CAS  Google Scholar 

  29. Shiotani M, Wang P, Komaguchi K (1999) Static and dynamic structural distortion of cyclohexane radical cations in low temperature matrices: an ESR study. Bull Polish Acad Sci Chem 47:89–102

    CAS  Google Scholar 

  30. Coulson CA, Strauss HL (1962) Static Jahn-Teller distortions in the small molecules: CH +4 , CF +4 , NH +3 (excited state) and NH3 (excited state). Proc R Soc Lond Ser A 269:443–455

    Article  Google Scholar 

  31. Dixon RN (1971) On the Jahn-Teller distortion of CH +4 . Mol Phys 20:113–126

    Article  CAS  Google Scholar 

  32. Grimm FA, Gody J (1970) A calculation on the geometry of CH +4 . Chem Phys Lett 6:336–338

    Article  CAS  Google Scholar 

  33. Shchegoleva LN, Schastnev PV (1995) Molecular distortions in ionic and excited states. CRC Press, New York

    Google Scholar 

  34. Knight LB Jr, Steadman J, Feller D, Davidson ER (1984) Experimental evidence for a C 2v (2B1) ground-state structure of the methane cation radical: ESR and ab initio CI investigations of CH +4 and CD2 H +2 in neon matrices at 4 K. J Am Chem Soc 106:3700–3701

    Article  CAS  Google Scholar 

  35. Knight LB Jr, King GM, Petty JT, Matsushita M, Momose M, Shida T (1995) Electron spin resonance studies of the methane radical cations (12,13CH4 +, 12,13CDH3 +, 12CD2 H2 +, 12CD3 H+, 12CD4 +) in solid neon matrices between 2.5 and 11 K: analysis of tunneling. J Chem Phys 103:3377–3385

    Article  CAS  Google Scholar 

  36. Komaguchi K, Marutani T, Shiotani M, Hasegawa A (2001) Isotope effects in partially deuterated tetramethylsilane cations studied by EPR spectroscopy. Phys Chem Chem Phys 3:3536–3540

    Article  CAS  Google Scholar 

  37. Shiotani M, Ohta N, Ichikawa T (1988) Structure and reaction of methylcyclohexane radical cation: ESR studies. Chem Phys Lett 149:185–190

    Article  CAS  Google Scholar 

  38. Lindgren M, Shiotani M, Ohta N, Ichikawa T, Sjöqvst L (1989) ESR evidence of a distorted 2Ag electronic structure for the methylcyclohexane radical cation. Chem Phys Lett 161:127–130

    Article  CAS  Google Scholar 

  39. Shiotani M, Lindgren M, Ichikawa T (1990) The Jahn-Teller split HOMO of the cyclohexane cation in selectively alkyl-substituted cyclohexanes: an ESR and MNDO/INDO MO study. J Am Chem Soc 112:967–973

    Article  CAS  Google Scholar 

  40. Shiotani M, Lindgren M, Ohta N (1991) Ichikawa T (1991) Radical cations of cyclohexanes alkyl-substituted on one carbon: an ESR study of the Jahn-Teller distorted HOMO of cyclohexane. J Chem Soc Perkin Trans 2:711–719

    Google Scholar 

  41. Fängström T, Lunell S, Engles B, Eriksson L, Shiotani M, Komaguchi K (1997) Structure and dynamics of the silacyclobutane radical cation, studies by ab initio and density functional theory and electron spin resonance spectroscopy. J Chem Phys 107:297–306

    Article  Google Scholar 

  42. Komaguchi K, Marutani T, Shiotani M, Hasegawa A (1999) Asymmetrically distorted structure of radical cations of ethylsilanes, studied by electron resonance spectroscopy, ab initio and density functional theories. Phys Chem Chem Phys 1:4549–4554

    Article  CAS  Google Scholar 

  43. Komaguchi K, Nomura K, Shiotani M (2007) High-resolution ESR study of the H⋯CH3 , H⋯CHD2 , D⋯CH2 D, and D⋯CD3 radical pairs in solid argon. J Phys Chem A111:726–733

    Article  CAS  Google Scholar 

  44. Komaguchi K, Kumada T, Takayanagi T, Aratono Y, Shiotani M, Miyazaki T (1999) H atom-H2 molecule van der Waals complexes in solid argon matrix by high-resolution ESR spectroscopy. Chem Phys Lett 300:257–261

    Article  CAS  Google Scholar 

  45. Komaguchi K, Yamada S, Shiotani M, Kasai PH (1999) Partial orientation and dynamics of NO2 in solid hydrogen: a high resolution ESR study. In: Proceeding of 3rd international conference on low temp chem, Nagoya

    Google Scholar 

  46. Kumada T, Yakayanagi T, Kumagai J (2006) ESR study of H +6 and H4 D +2 produced in irradiated solid hydrogen. J Mol Struct 786:130–133

    Article  CAS  Google Scholar 

  47. Kumagai J, Inagaki H, Kariya S, Ushida T, Shimizu Y, Kumada T (2007) Electron spin resonance study on H6 +, H5 D+, H4 D2 +, and H2 D4 +in solid hydrogen. J Chem Phys 127(024505):1–13

    Google Scholar 

  48. Bonazzola L, Michaut JP, Roncin J (1991) Structure of Si(CH3) +4 radical cation: an ESR and theoretical study. J Phys Chem 95:3132–3135

    Article  CAS  Google Scholar 

  49. Bonazzola L, Michaut JP, Roncin J (1992) Structure of X(CH3) +4 and (CH3)3 XX(CH3) +3 radical cations. (X= Si, Ge, Sn). New J Chem 16:489–496

    CAS  Google Scholar 

  50. Knight LB Jr, Gregory BW, Hill DW, Arrington CA, Momose T, Shida T (1991) Electron-spin-resonance studies of 12CH3 F+, 13CH3 F+, and 12CH2 DF+in neon matrices at 4 K: comparison with theoretical calculations. J Chem Phys 94:67–79

    Article  CAS  Google Scholar 

  51. Yates BF, Bouma WJ, Radon L (1987) Ylides and ylidions: a comparative study of unusual gas-phase structures. J Am Chem Soc 109:2250–2263

    Article  CAS  Google Scholar 

  52. Komaguchi K, Ishiguri Y, Tachikawa H, Shiotani M (2002) Selectivity and enormous H/D isotope effects on H atom abstraction by CH3 radicals in solid methylsilane at 3.0 K-115 K. Phys Chem Chem Phys 4:5276–5280

    Article  CAS  Google Scholar 

  53. Komaguchi K, Norberg D, Nakazawa N, Shiotani M, Persson P, Lunell S (2005) Direct ESR evidence for S H 2 reaction of methyl radical with methylsilane and methylgermane in a low temperature solid phase: a deuterium labeling study. Chem Phys Lett 410:1–5

    Article  CAS  Google Scholar 

  54. Norberg N, Shiotani M, Lunell S (2008) SH 2 reaction vs. hydrogen abstraction/expulsion in methyl radical-methylsilane reactions: effects of prereactive complex formation. J Phys Chem A 112:1330–1338

    Article  CAS  Google Scholar 

  55. Jen CK, Foner SN, Cochran EL, Bowers VA (1958) Electron spin resonance of atomic and molecular free radicals trapped at liquid helium temperature. Phys Rev 112:1169–1182

    Article  CAS  Google Scholar 

  56. Morehouse RL, Christiansen JJ, Gordy W (1966) ESR of free radicals trapped in inert matrices at low temperature: CH3 , SiH3 , GeH3 , and SnH3 . J Chem Phys 45:1751–1758

    Article  CAS  Google Scholar 

  57. Kasai PH, McLeod D Jr (1972) Electron spin resonance study of pyrolysis and photolysis of 2-iodoacetic acid and 2-iodoacetamide. J Am Chem Soc 94:7975–7981

    Article  CAS  Google Scholar 

  58. Cirelli G, Russu A, Wolf R, Rudin M, Schweiger A, Günthard HH (1982) Detection of endor spectra of paramagnetic species isolated in solid argon. Chem Phys Lett 92:223–224

    Article  CAS  Google Scholar 

  59. Fujimoto M, Gesser HD, Garbutt B, Cohen A (1966) Electron paramagnetic resonance of methyl radicals on porous glass surface. Science 154:381–382

    Article  CAS  Google Scholar 

  60. Shiotani M, Yuasa F, Sohma J (1975) Electron spin resonance studies of methyl radicals trapped on 4A type zeolite. J Phys Chem 79:2669–2674

    Article  CAS  Google Scholar 

  61. Fessenden RW (1967) Electron spin resonance spectra of some isotopically substituted hydrocarbon radicals. J Phys Chem 71:74–83

    Article  CAS  Google Scholar 

  62. Kubota S, Iwaizumi M, Ikegami Y, Shimokoshi K (1979) Anisotropic hyperfine interaction in the electron spin resonance spectrum of the methyl radical trapped in CH3 COONa·3D2 O crystal at low temperatures. J Chem Phys 71:4771–4776

    Article  CAS  Google Scholar 

  63. Sϕrnes AR, Benetis NP, Erickson R, Mahgoub AS, Eberson L, Lund A (1997) Effect of isotopic substitution on the electron spin dynamics of the CH3 C(COOH)2 radical in x-irradiated methyl malonic acid powder: intrinsic potentials and activation energies. J Phys Chem A 101:8987–8994

    Article  Google Scholar 

  64. Kurita Y (1964) Electron spin resonance study of radical pairs trapped in irradiated single crystals of dimethylglyoxime at liquid-nitrogen temperature. J Chem Phys 41:3926–3927

    Article  CAS  Google Scholar 

  65. Gordy W, Morehouse R (1966) Triplet-state electron spin resonance of an H-atom – methyl radical complex in a solid matrix. Phys Rev 151:207–210

    Article  CAS  Google Scholar 

  66. Toriyama K, Iwasaki M, Nunome K (1979) ESR studies of irradiated methane and ethane at 4.2 K and mechanism of pairwise trapping of radicals in irradiated alkanes. J Chem Phys 71:1698–1705

    Article  CAS  Google Scholar 

  67. Atherton NM (1973) Electron spin resonance: theory and applications. Wiley, New York

    Google Scholar 

  68. Foner SN, Cochran EL, Bowers VA, Jen CK (1960) Multiple trapping sites for hydrogen atoms in rare gas matrices. J Chem Phys 32:963–971

    Article  CAS  Google Scholar 

  69. Adrian FJ (1960) Matrix effects on the electron spin resonance spectra of trapped hydrogen atoms. J Chem Phys 32:972–981

    Article  CAS  Google Scholar 

  70. VanZee RJ, Williams AP, Weltner W Jr (1997) Electron spin resonance of the H⋯NH2 radical pair. J Phys Chem 101:2917–2920

    Article  CAS  Google Scholar 

  71. Knight LB Jr, Rice WE, Moore L, Davidson ER (1995) ESR observation of the H⋯H, H⋯D, and D⋯D spin-pair radicals in rare gas matrices. J Chem Phys 103:5275–5278

    Article  CAS  Google Scholar 

  72. Knight LB Jr, Rice WE, Moore L, Davidson ER, Dailey RS (1998) Theoretical and electron spin resonance studies of the H⋯H, H⋯D, and D⋯D spin-pair radicals in rare gas matrices: a case of extreme singlet-triplet mixing. J Chem Phys 109:1409–1424

    Article  CAS  Google Scholar 

  73. Knight LB Jr, Bell BA, Cobranchi DP, Davidson ER (1999) Electron spin resonance and theoretical studies of the 14N⋯14N spin pair radicals in neon matrices: the effects of mixing among the 1Σ +g , 3Σ +u , 5Σ +g , and 7Σ +u electronic states. J Chem Phys 111:3145–3154

    Article  CAS  Google Scholar 

  74. Hancock GC, Mead CA, Truhlar DG, Varandas AJC (1989) Reaction rates of H(H2), D(H2), and H(D2) van der Waals molecules and the threshold behavior of the bimolecular gas-phase rate coefficient. J Chem Phys 91:3492–3503

    Article  CAS  Google Scholar 

  75. Takayanagi T, Sato S (1990) The bending-corrected-rotating-linear-model calculations of the rate constants for the H + H2 reaction and its isotopic variants at low temperatures: the effect of van der Waals well. J Chem Phys 92:2862–2868

    Article  CAS  Google Scholar 

  76. Vaskonen K, Eloranta J, Kiljunen T, Kunttu H (1999) Thermal mobility of atomic hydrogen in solid argon and krypton matrices. J Chem Phys 110:2122–2128

    Article  CAS  Google Scholar 

  77. Van Kranendonk J (1983) Solid parahydrogen. Plenum Press, New York

    Book  Google Scholar 

  78. Miyazaki T, Hiraku T, Fueki K, Tsuchihashi Y (1991) Effect of rotational quantum states (J = 0, 1) on the tunneting reaction H2  + H → H + H2 , in parahydrogen solid at 4.2 K. J Phys Chem 95:26–29

    Article  CAS  Google Scholar 

  79. Kumada T, Kumagai J, Miyazaki T (2001) High-resolution electron spin resonance spectroscopy of ethyl radicals in solid parahydrogen. J Chem Phys 114:10024–10030

    Article  CAS  Google Scholar 

  80. Fessenden RW (1962) Second-order splittings in the ESR spectra of organic radicals. J Chem Phys 37:747–750

    Article  CAS  Google Scholar 

  81. Kumada T, Tachikawa H, Takayanagi T (2005) H +6 in irradiated solid para-hydrogen and its decay dynamics: reinvestigation of quartet electron paramagnetic resonance lines assigned to H 2 . Phys Chem Chem Phys 7:776–784

    Article  CAS  Google Scholar 

  82. Shinizu Y, Kumada T, Kumagai J (2008) Electron spin resonance spectroscopy of molecules in large precessional motion: a case of H +6 and H4 D +2 in solid parahydrogen. J Magn Reson 194:76–80

    Article  CAS  Google Scholar 

  83. Shiotani M, Freed JH (1981) ESR studies of NO2 adsorbed on surfaces. Analysis of motional dynamics. J Phys Chem 85:3873–3883

    Article  CAS  Google Scholar 

  84. Kasai PH, Weltner W Jr, Whipple EB (1965) Orientation of NO2 and other molecules in neon matrices at 4°K. J Chem Phys 42:1120–1121

    Article  CAS  Google Scholar 

  85. Iwasaki M, Toriyama K, Nunome K (1981) Electron spin resonance study of electronic and geometrical structures of C2 H +6 and other simple alkane cations at 4.2 K: possible evidence for Jahn-Teller distortion. J Am Chem Soc 103:3591–3592

    Article  CAS  Google Scholar 

  86. Komaguchi K, Shiotani M, Lund A (1997) An ESR study of trimethylenemethane radical cation. Chem Phys Lett 265:217–223

    Article  CAS  Google Scholar 

  87. Bally T, Maltsev A, Gerson F, Frank D, de Meijere A (2005) Radical cation of a trimethylenemethane with a nondegenerate ground state. J Am Chem Soc 127:1984–1988

    Article  CAS  Google Scholar 

  88. Dowd P (1972) Trimethylenemethane. Acc Chem Res 5:242

    Article  CAS  Google Scholar 

  89. Claesson O, Lund A, Gillbro T, Ichikawa T, Edlund O, Yoshida H (1980) A single crystal EPR study of ground state triplet trimethylenemethane. J Chem Phys 72:1463–1470

    Article  CAS  Google Scholar 

  90. Slipchenko LV, Krylova AI (2003) Electronic structure of the trimethylenemethane diradical in its ground and electronically excited states: bonding, equilibrium geometries, and vibrational frequencies. J Chem Phys 118:6874–6883

    Article  CAS  Google Scholar 

  91. Meyer W (1973) PNO-CI studies of electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane. J Chem Phys 58:1017–1035

    Article  CAS  Google Scholar 

  92. Paddon-Raw MN, Fox DJ, Pople JA, Houk KN, Pratt DW (1985) Dynamic Jahn-Teller effects in CH +4 . Location of the transition structures for hydrogen scrambling and inversion. J Am Chem Soc 107:7696–7700

    Article  Google Scholar 

  93. Frey RF, Davidson ER (1988) Potential energy surfaces of CH +4 . J Chem Phys 88:1775–1785

    Article  CAS  Google Scholar 

  94. Eriksson LA, Lunell S, Boyd RJ (1993) Electronic structure calculations of hydrocarbon radical cations: a density functional study. J Am Chem Soc 115:6896–6900

    Article  CAS  Google Scholar 

  95. Walther BW, Williams F (1982) ESR spectra and structure of the tetramethylsilane and tetramethylgermaneradical cations. J Chem Soc Chem Commun 1982:270–272

    Google Scholar 

  96. Sjöqvst L, Lindgren M, Lund A, Shiotani M (1990) Mirror inversion of the low-symmetry ground-state structures of the methylcyclohexane and 1, l-dimethylcyclohexane radical cations. J Chem Soc Faraday Trans 86:3377–3382

    Article  Google Scholar 

  97. Heller C, McConnell HM (1960) Radiation damage in organic crystals. II. Electron spin resonance of (CO2 H)CH2 CH(CO2 H) in β-succinic acid. J Chem Phys 32:1535–1539

    Article  CAS  Google Scholar 

  98. Frankel GK (1967) Line widths and frequency shifts in electron spin resonance spectra. J Phys Chem 71:139–171

    Article  Google Scholar 

  99. Knight LB Jr, Kerr K, Villanueva M, Mckinley AJ (1992) Theoretical and neon matrix electron spin resonance studies of the methanol cation: CH3 OH+, CH3 OD+, CH2 DOH+and 13CH3 OH+. J Chem Phys 97:5363–5376

    Article  CAS  Google Scholar 

  100. Knight LB Jr, Steadman J (1984) An ESR investigation of the formaldehyde cation radicals (H 122 CO+and H 132 CO+) in neon matrices at 4 K. J Chem Phys 80:1018–1025

    Article  CAS  Google Scholar 

  101. Weltner W Jr (1983) Magnetic atoms and molecules. Van Nostrand, New York

    Google Scholar 

  102. Iwasaki M, Toriyama K (1984) Electron spin resonance studies of structures and reactions of radical cations of a series of cycloalkanes in low-temperature matrices. Faraday Discuss Chem Soc 78:19–33

    Article  CAS  Google Scholar 

  103. Lunell S, Huang MB, Claesson O, Lund A (1985) Theoretical ab initio and low-temperature ESR study of the cyclohexane cation. J Chem Phys 82:5121–5126

    Article  CAS  Google Scholar 

  104. Lindgren M, Matsumoto M (1992) Shiotani M (1992) Radical cations of cis- and trans-1,3-di- and 1,3,5-trimethylcyclohexanes: matrix influence on two nearly degenerate SOMOs. J Chem Soc Perkin Trans 2:1397–1402

    Google Scholar 

  105. Shiotani M, Matsumoto M, Lindgren M (1993) Electronic structure, methyl group reorientation and reactions of radical cations of 1,2,4-trimethylcyclohexanes: an EPR study. J Chem Soc Perkin Trans 2:1995–2002

    Google Scholar 

  106. Komaguchi K, Shiotani M, Ishikawa M, Sasaki K (1992) Structure and ring puckering motion of the σ-localized silacyclobutane radical cation: ESR evidence. Chem Phys Lett 200:580–586

    Article  CAS  Google Scholar 

  107. Shiotani M, Komaguchi K, Ohshita J, Ishikawa M, Sjöqvist L (1992) An asymmetrically distorted structure of the 1-methylsilacyclohexane radical cation: ESR evidence. Chem Phys Lett 188:93–99

    Article  CAS  Google Scholar 

  108. Lindgren M, Komaguchi K, Shiotani M, Sasaki K (1994) Upon the structure of c-C5 H +10 : asymmetrical SOMO of methylsubstituted cyclopentane cation radicals. J Phys Chem 98:8331–8338

    Article  CAS  Google Scholar 

  109. Ito Y, Mohamed HFM, Shiotani M (1996) Vacancies in the solids of low molecular weight organic compounds observed by positron annihilation. J Phys Chem 100:14161–14165

    Article  CAS  Google Scholar 

  110. Itagaki Y, Shiotani M, Tachikawa H (1997) Electronic structure of methylacetylene radical anion: an EPR and MO study. Acta Chem Scand 51:220–223

    Article  CAS  Google Scholar 

  111. Hasegawa A, Itagaki Y, Shiotani M (1997) EPR spectra and structure of the radical cations of fluorinated benzenes. J Chem Soc Perkin Trans 2:1625–1631

    Google Scholar 

  112. Kadam RM, Erickson R, Komaguchi K, Shiotani M, Lund A (1998) The static Jahn-Teller distortion of the monomer and geometry of the dimer cation. Chem Phys Lett 290:371–378

    Article  CAS  Google Scholar 

  113. Itagaki Y, Shiotani M, Hasegawa A, Kawazoe H (1998) EPR spectra and structure of the radical cations of fluorinated ethylenes and propenes. Bull Chem Soc Jpn 71:2547–2554

    Article  CAS  Google Scholar 

  114. Sakurai H, Shiotani M, Ichikawa T (1999) Hydrogen molecule detachment in irradiated 1,2-dimethyl cyclohexane: stereo-selective reaction. Radiat Phys Chem 54:235–240

    Article  CAS  Google Scholar 

  115. Itagaki Y, Shiotani M (1999) Photoinduced isomerization of trans-acetylene radical anion to vinylidene radical anion in 2-methyltetrahydrofuran. J Phys Chem A 103:5189–5195

    Article  CAS  Google Scholar 

  116. Lide DR (ed) (2001) CRC handbook of chemistry and physics, 82nd edn. CRC Press, Boca Raton

    Google Scholar 

  117. (a) Pearson RG (1969) A symmetry rule for predicting molecular structure and reactivity. J Am Chem Soc 91:1252–1254; (b) A symmetry rule for predicting molecular structures. J Am Chem Soc 91:4947–4955

    Google Scholar 

  118. Ingold KU, Roberts BP (1973) Free-radical substitution reactions. Wiley-Interscience, New York

    Google Scholar 

  119. Davies AG, Roberts BP (1973) Bimolecular homolytic substitution at metal centers. In: Kochi JK (ed) Free radicals, vol 1. Wiley-Interscience, New York, pp 547–587

    Google Scholar 

  120. Fossey J, Lefort D, Sorba J (1995) Free radicals in organic chemistry. Wiley, Chichester, pp 123–137

    Google Scholar 

  121. Walton JC (1998) Homolytic substitution – a molecular ménage à trois. Acc Chem Res 31:99–107

    Article  CAS  Google Scholar 

  122. Schiesser CH, Wild LM (1996) Tetrahedron 52:13265–13314

    Article  CAS  Google Scholar 

  123. Turecek F (2003) Transient intermediates of chemical reactions by neutralization-reionization mass spectroscopy. In: Schalley CA (ed) Modern mass spectroscopy – topics in current chemistry 225. Springer, Berlin

    Google Scholar 

  124. Wisniowski P, Bobrowski K, Carmichael I, Hug GL (2004) Bimolecular homolytic substitution (SH 2) reactions with hydrogen atoms. Time-resolved electron spin resonance detection in the pulse radiolysis of α-(Methylthio)acetamide. J Am Chem Soc 126:14468–14474

    Article  CAS  Google Scholar 

  125. Sullivan PJ, Koski WS (1963) An electron spin resonance study of the relative stabilities of free radicals trapped in irradiated methanol at 77°K. J Am Chem Soc 85:384–387

    Article  CAS  Google Scholar 

  126. French WG, Willard JE (1968) Radical decay kinetics in organic glasses. Spatial effects and isotope effects. J Phys Chem 72:4604–4608

    Article  CAS  Google Scholar 

  127. Williams F, Sprague ED (1971) Evidence for hydrogen atom abstraction by methyl radicals in the solid state at 77°K. J Am Chem Soc 93:787–788

    Article  CAS  Google Scholar 

  128. Sprague ED (1973) Hydrogen atom abstraction by methyl radicals in 3-methylpentane glass at 77 K. J Phys Chem 77:2066–2070

    Article  CAS  Google Scholar 

  129. Miyazaki T (1991) Reaction of hydrogen atoms produced by radiolysis and photolysis in solid phase at 4 and 77 K. Radiat Phys Chem 37:635–642

    CAS  Google Scholar 

  130. Hadson RL, Shiotani M, Williams F (1977) Hydrogen atom abstraction by methyl radicals in methanol glasses at 15–100 K: evidence for a limiting rate constant below 40 K by quantum-mechanical tunneling. Chem Phys Lett 48:193–196

    Article  Google Scholar 

  131. Hiraoka K, Sato T, Sato S, Hishiki S, Suzuki K, Takahashi Y, Yokoyama T, Kitagawa S (2001) Formation of amorphous silicon by the low-temperature tunneling reaction of H atoms with solid thin film of SiH4 at 10 K. J Phys Chem B 105:6950–6955

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Shiotani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shiotani, M., Komaguchi, K. (2013). Deuterium Labeling Studies and Quantum Effects of Radicals in Solids. In: Lund, A., Shiotani, M. (eds) EPR of Free Radicals in Solids I. Progress in Theoretical Chemistry and Physics, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4893-4_4

Download citation

Publish with us

Policies and ethics