Advertisement

EXA 2011 pp 151-156 | Cite as

g-2 of the Muon

After 10 years still a puzzle for the now consistent theory – The Brookhaven experiment moves to Fermilab
  • Klaus P. JungmannEmail author
Conference paper

Abstract

The experimental value a\(_{\mu}^{\rm exp}\) for the muon magnetic anomaly measured at the Brookhaven National Laboratory (BNL), Upton, USA, and the latest theoretical value a\(_{\mu}^{\rm theo}\) based on a number of calculations and auxiliary experiments differ today by 3.3 standard deviations. Discrepancies between different independent approaches towards the theoretical value could recently be removed and had yielded a consistent value for a\(_{\mu}^{\rm theo}\). At the Fermi National Laboratory (Fermilab), Batavia, USA, a new experiment has been approved which aims to improve the present experimental uncertainty by a factor of about five. At this level the muon magnetic anomaly is superior in sensitivity to, e.g., LHC concerning tests of several speculative models beyond standard theory. The new experiment relies in the essential parts on concepts proven at BNL such as a muon storage ring at 1.45 T field to store muons at 3.1 GeV/c momentum and field magnetometry based on NMR in water. At Fermilab predominantly a significantly higher number of muons can be exploited.

Keywords

Muon magnetic anomaly Standard model test New physics search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roberts, B.L., Marciano, W.J. (eds.): Lepton Dipole Moments. World Scientific, Singapore (2010)Google Scholar
  2. 2.
    Czarnecki, A., Marciano, W.J.: Electromagnetic Dipole Moments and New Physics. In: Roberts, B.L., Marciano, W.J. (eds.) Lepton Dipole Moments, pp. 119–156. World Scientific, Singapore (2010)Google Scholar
  3. 3.
    Miller, J.P., Roberts, B.L., Jungmann, K.: Measurement of the Muon (g-2) Value. In: Roberts, B.L., Marciano, W.J. (eds.) Lepton Dipole Moments, pp. 333–392. World Scientific, Singapore (2010)Google Scholar
  4. 4.
    Bennett G.W., et al.: Final report of the E821 muon anomalous magnetic moment measurement at BNL. Phys. Rev. D 73, 072003 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Bennett, G.W., et al.: Measurement of the negative muon anomalous magnetic moment to 0.7 ppm. Phys. Rev. Lett. 92, 161802 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Bennett, G.W., et al.: Measurement of the positive muon anomalous magnetic moment to 0.7 ppm. Phys. Rev. Lett. 89, 101804 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Brown, H.N., et al.: Precise measurement of the positive muon anomalous magnetic moment. Phys. Rev. Lett. 86, 2227 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    Onderwater, C.J.G.: Search for electric dipole moments at storage rings. EXA2011 Conference (2011, to be published in Hyperfine Interact.)Google Scholar
  9. 9.
    Willmann, L.: The TRIμP facility. EXA2011 Conference (2011, to be published in Hyperfine Interact.)Google Scholar
  10. 10.
    Abele, H.: New experiments in neutron physics. EXA2011 Conference (2011, to be published in Hyperfine Interact.)Google Scholar
  11. 11.
    Lehnert, R.: CPT-symmetry studies with Antihydrogen. EXA2011 Conference (2011, to be published in Hyperfine Interact.)Google Scholar
  12. 12.
    Müller, S.: Lorentz invariance on trial in the weak decay of rubidium atoms. EXA2011 Conference (2011, to be published in Hyperfine Interact.)Google Scholar
  13. 13.
    Jegerlehner, F.: ρ 0-γ mixing in the neutral channel pion form factor F\(_{\pi}^{(e)}\)(s) and its role in comparing e + e− with τ spectral functions. Eur. Phys. J. C 71, 1632 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Prigl, R., et al.: A high precision magnetometer based on pulsed NMR. Nucl. Instrum. Methods A 374, 118 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    Liu, W., et al.: High precision measurements of the ground state hyperfine structure interval of muonium and of the muon magnetic moment. Phys. Rev. Lett. 82, 711 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Bennett, G.W., et al.: Improved limit on the muon electric dipole moment. Phys. Rev. D 80, 052008 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Bennett, G.W., et al.: Search for Lorents and CPT violation effects in muon spin precession. Phys. Rev. Lett 100, 091602 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Bluhm, R., Kostelecki, V.A., Lane, C.D.: CPT and Lorentz tests with muons. Phys. Rev. Lett. 84, 1098 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    Kostelecky, V.A., Russell, N.: Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 83, 1 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Hughes, V.W., et al.: Test of CPT and Lorentz Invariance from muonium spectroscopy. Phys. Rev. Lett. 87, 111804 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    Roberts, B.L.: Status of the Fermilab muon (g-2) experiment. Chinese Physics C 34, 741 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Bandyopadhyay, A., et al.: Physics at a future Neutrino Factory and Super Beam Facility. Reports on Progress in Physics 72, 106201 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Kernfysisch Versneller InstituutUniversity of GroningenGroningenThe Netherlands

Personalised recommendations