Advertisement

EXA 2011 pp 105-110 | Cite as

Studying hadrons in matter with PANDA

  • P. BühlerEmail author
  • on behalf of the PANDA collaboration
Conference paper

Abstract

With the PANDA experiment at the FAIR facility in Darmstadt, Germany it will be possible to investigate antiproton-nucleus reactions in an energy range not explored so far. This provides opportunities for unique measurements of which some are outlined in this article. Possible modifications of hadron properties in nuclear matter is subject of extensive theoretical and experimental studies. With PANDA it will be possible to extend this kind of studies to the charm sector. A study of particular interest will be to measure the J/Ψ-nucleon dissociation cross-section. This cross-section is relevant for the interpretation of the J/Ψ suppression observed in high energy heavy ion reactions. Further topics include the study of antibaryons in nuclei and short-range nucleon-nucleon correlations.

Keywords

Antiproton-nucleus reactions PANDA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    PANDA experiment website. http://www.panda.gsi.de/. Accessed 20 February 2012
  2. 2.
    The PANDA collaboration: Physics performance report for PANDA (2009). arXiv:0903.3905v1 [hep-ex]. Accessed 20 February 2012
  3. 3.
    Saito, K., Tsushima, K., Thomas, A.W.: Prog. Part. Nucl. Phys. 58, 1 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Metag, V.: AIP Conf. Proc. 1322, 73 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Hayashigaki, A.: Phys. Lett. B 487, 96 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Lutz, M.F.M., Korpa, C.L.: Phys. Lett. B 633, 43 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Mitzutani, T., Ramos, A.: Phys. Rev. C 74, 065201 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Nakamura, K., et al. (Particle Data Group): J. Phys. G 37, 075021 (2010). http://pdg.lbl.gov http://pdg.lbl.gov ADSGoogle Scholar
  9. 9.
    Pochodzalla, J.: Phys. Lett. B 669, 306 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Mishutsin, I.N., et al.: Phys. Rev. C 71, 035201 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Larionov, A.B., et al.: Phys. Rev. C 78, 014604 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Aslanides, E., et al.: Nucl. Phys. A 470, 445 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    Subedi, R., et al.: Science 320, 1476 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Arrington, J., et al. (2011). arXiv:1104.1196v2 [nucl-ex]. Accessed 20 February 2012
  15. 15.
    NA50 collaboration: Eur. Phys. J. C 48, 329 (2006)CrossRefGoogle Scholar
  16. 16.
    Brodsky, S.J., Mueller, A.H.: Phys. Lett. B 206, 685 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    Armstrong, T.A., et al.: Phys. Rev. D 47, 772 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    De Vries, H. et al.: At. Data Nucl. Data Tables 36, 495 (1987)ADSCrossRefGoogle Scholar
  19. 19.
    Reuter, W., et al.: Phys. Rev. C 26, 806 (1982)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • P. Bühler
    • 1
    Email author
  • on behalf of the PANDA collaboration
  1. 1.Stefan Meyer Institute for subatomic PhysicsAustrian Academy of SciencesViennaAustria

Personalised recommendations