Advertisement

EXA 2011 pp 83-92 | Cite as

Atoms in flight and the remarkable connections between atomic and hadronic physics

  • Stanley J. BrodskyEmail author
Conference paper

Abstract

Atomic physics and hadron physics are both based on Yang Mills gauge theory; in fact, quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics provide important insight into the theory of hadrons in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of light-front relativistic equations of motion which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The renormalization scale for the running coupling, which is unambiguously set in QED, leads to a method for setting the renormalization scale in QCD. The production of atoms in flight provides a method for computing the formation of hadrons at the amplitude level. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, and light-front quantization have equal utility for atomic physics, especially in the relativistic domain. I also present a new perspective for understanding the contributions to the cosmological constant from QED and QCD.

Keywords

Quantum electrodynamics Atomic physics Hadron physics Light-front 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brodsky, S.J., Huet, P.: Phys. Lett. B 417, 145. arXiv:hep-ph/9707543 (1998)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    de Teramond, G.F., Brodsky, S.J.: Phys. Rev. Lett. 102, 081601. arXiv:0809.4899 [hep-ph] (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Baur, G., et al.: Phys. Lett. B 368, 251 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    Blanford, G., Christian, D.C., Gollwitzer, K., Mandelkern, M., Munger, C.T., Schultz, J., Zioulas, G.: E862 Collaboration. Phys. Rev. Lett. 80, 3037 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Munger, C.T., Brodsky, S.J., Schmidt, I.: Phys. Rev. D 49, 3228 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    Robiscoe, R.T.: Phys. Rev. 138, A22 (1965)ADSCrossRefGoogle Scholar
  7. 7.
    Brodsky, S.J., Peterson, C., Sakai, N.: Phys. Rev. D 23, 2745 (1981)ADSCrossRefGoogle Scholar
  8. 8.
    Brodsky, S.J., Collins, J.C., Ellis, S.D., Gunion, J.F., Mueller, A.H.: Intrinsic Chevrolets at the SSC. DOE/ER/40048-21 P4, C84/06/23. p. 10. In: Proc. Of Conference: C84-06-23 (1984) (Snowmass Summer Study 1984:0227)Google Scholar
  9. 9.
    Franz, M., Polyakov, M.V., Goeke, K.: Phys. Rev. D 62, 074024. arXiv:hep-ph/0002240 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Brodsky, S.J., de Teramond, G., Shrock, R.: AIP Conf. Proc. 1056, 3. arXiv:0807.2484 [hep-ph] (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Brodsky, S.J., de Teramond, G.F.: Light-front holography and QCD hadronization at the amplitude level. SLAC-PUB-13504. Jan 2009. p. 5. In: Proceedings of the 18th International Conference On Particles And Nuclei (PANIC 08). Eilat, Israel, 9–14 Nov 2008 arXiv:0901.0770 [hep-ph] (2009)
  12. 12.
    Pauli, H.C., Brodsky, S.J.: Phys. Rev. D 32, 1993 (1985)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Brodsky, S.J., Lebed, R.F.: Phys. Rev. Lett. 102, 213401. arXiv:0904.2225 [hep-ph] (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Abrahamyan, S., et al.: APEX Collaboration. Phys. Rev. Lett. 107, 191804. arXiv:1108.2750 [hep-ex] (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Bennett, G.W., et al.: Muon G-2 Collaboration. Phys. Rev. D 73, 072003. arXiv:hep-ex/0602035 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Pohl, R., Antognini, A., Nez, F., Amaro, F.D., Biraben, F., Cardoso, J.M.R., Covita, D.S., Dax, A., et al.: Nature 466, 213 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Greub, C., Wyler, D., Brodsky, S.J., Munger, C.T.: Phys. Rev. D 52, 4028. arXiv:hep-ph/9405230 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    Brodsky, S.J., Schmidt, I.A., de Teramond, G.F.: Phys. Rev. Lett. 64, 1011 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    Luke, M.E., Manohar, A.V., Savage, M.J.: Phys. Lett. B 288, 355. arXiv:hep-ph/9204219 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    Brodsky, S.J., de Teramond, G.F.: Phys. Rev. Lett. 60, 1924 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    Court, G.R., et al.: Phys. Rev. Lett. 57, 507 (1986)ADSCrossRefGoogle Scholar
  22. 22.
    Brodsky, S.J., Llanes-Estrada, F.J., Szczepaniak, A.P.: Phys. Rev. D 79, 033012. arXiv:0812.0395 [hep-ph] (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Gell-Mann, M., Low, F.E.: Phys. Rev. 95, 1300 (1954)MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Brodsky, S.J., Lepage, G.P., Mackenzie, P.B.: Phys. Rev. D 28, 228 (1983)ADSCrossRefGoogle Scholar
  25. 25.
    Dirac, P.A.M.: Rev. Mod. Phys. 21, 392 (1949)MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Brodsky, S.J., Primack, J.R.: Ann. Phys. 52, 315 (1969)ADSCrossRefGoogle Scholar
  27. 27.
    Brodsky, S.J., Hwang, D.S., Ma, B.Q., Schmidt, I.: Nucl. Phys. B 593, 311. arXiv:hep-th/0003082 (2001)ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Pauli, H.C., Brodsky, S.J.: Phys. Rev. D 32, 2001 (1985)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Hornbostel, K., Brodsky, S.J., Pauli, H.C.: Phys. Rev. D 41, 3814 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    Brodsky, S.J., de Teramond, G.F., Deur, A.: Phys. Rev. D 81, 096010. arXiv:1002.3948 [hep-ph] (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Brodsky, S.J., Hwang, D.S., Schmidt, I.: Phys. Lett. B 530, 99. arXiv:hep-ph/0201296 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    Collins, J.C.: Phys. Lett. B 536, 43. arXiv:hep-ph/0204004 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    Brodsky, S.J., Hwang, D.S., Schmidt, I.: Nucl. Phys. B 642, 344. arXiv:hep-ph/0206259 (2002)CrossRefGoogle Scholar
  34. 34.
    Lu, Z., Schmidt, I.: Phys. Rev. D 75, 073008. arXiv:hep-ph/0611158 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    Casher, A., Susskind, L.: Phys. Rev. D 9, 436 (1974)ADSCrossRefGoogle Scholar
  36. 36.
    Maris, P., Roberts, C.D., Tandy, P.C.: Phys. Lett. B 420, 267. arXiv:nucl-th/9707003 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    Maris, P., Roberts, C.D.: Phys. Rev. C 56, 3369. arXiv:nucl-th/9708029 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    Brodsky, S.J., Shrock, R.: Phys. Lett. B 666, 95. arXiv:0806.1535 [hep-th] (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Brodsky, S.J., Shrock, R.: Proc. Natl. Acad. Sci. 108, 45. arXiv:0803.2554 [hep-th] (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Brodsky, S.J., Roberts, C.D., Shrock, R., Tandy, P.C.: Essence of the vacuum quark condensate. SLAC-PUB-14107, CP3-ORIGINS-2010-18, p. 5. Phys. Rev. C 82, 022201. arXiv:1005.4610 [nucl-th] (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Chang, L., Roberts, C.D., Tandy, P.C.: Expanding the concept of in-hadron condensates, Sep 2011, p. 5. Phys. Rev. C 85, 012201. arXiv:1109.2903 [nucl-th] (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.SLAC National Accelerator LaboratoryStanford UniversityStanfordUSA

Personalised recommendations