Advertisement

EXA 2011 pp 75-81 | Cite as

Kinetic energy distributions of muonic and pionic hydrogen atoms

  • Vladimir P. PopovEmail author
  • Vladimir N. Pomerantsev
Conference paper

Abstract

The kinetic energy distributions of μ − p and π − p atoms at a time of the radiative np→1s transitions and charge-exchange reaction (in case of π − p) have been studied in the improved version of extended standard cascade model (ESCM). Ab initio quantum-mechanical calculations of the differential and integral cross sections of the elastic scattering, Stark transitions, Coulomb deexcitation (CD), and induced absorption (in case of pionic hydrogen) have been performed in a framework of the close-coupling approach for the states of exotic atoms with \(n\leqslant 8\) and relative motion energies \(E \geqslant 0.0001\) eV. The calculated X-ray yields and kinetic energy distributions are in good agreement with the known experimental data. The initial (n, l, E)-distributions of the exotic atoms and target motion are explicitly taken into account.

Keywords

Muonic and pionic hydrogen Scattering processes Atomic cascade 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leon, M., Bethe, H.A.: Phys. Rev. 127, 636 (1962)ADSCrossRefGoogle Scholar
  2. 2.
    Markushin, V.E.: Phys. Rev. A 50, 1137 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    Jensen, T.S., Markushin, V.E.: Eur. Phys. J. D 21, 271 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Pohl, R.: Ph.D. thesis, ETH Zurich No. 14096 (2001)Google Scholar
  5. 5.
    Pohl, R., et al.: Hyperfine Interact. 138, 35 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Kottman, F., et al.: Hyperfine Interact. 138 55 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Badertscher, A., et al.: Europhys. Lett. 54, 313 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    Pohl, R., et al.: Phys. Rev. Lett. 97, 193402 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Covita, D.S., et al.: Phys. Rev. Lett. 102, 023401 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Gotta, D.: Prog. Part. Nucl. Phys. 52, 133 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Popov, V.P., Pomerantsev, V.N.: Phys. Rev. A 83, 032516 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Korenman, G.Ya., Pomerantsev, V.N., Popov, V.P.: JETP Lett. 81, 543 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Pomerantsev, V.N., Popov, V.P.: JETP Lett. 83, 331 (2006)CrossRefGoogle Scholar
  14. 14.
    Pomerantsev, V.N., Popov, V.P.: Phys. Rev. A 73, 040501(R) (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Korenman, G.Ya., Popov, V.P.: AIP Conf. Proc. 181, 145 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    Korenman, G.Ya., Popov, V.P., Fesenko, G.A.: Muon Catal. Fusion 7, 179 (1992)Google Scholar
  17. 17.
    Cohen, J.S.: Rep. Prog. Phys. 67, 1769 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Anderhub, H., et al.: Phys. Lett. B 143, 65 (1984)ADSCrossRefGoogle Scholar
  19. 19.
    Bregant, N., et al.: Phys. Lett. A 241, 344 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Lauss, B., et al.: Phys. Rev. Lett. 80, 3041 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    Martynenko, A.P., Faustov, R.N.: JETP 98, 39 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations