Skip to main content

Airborne Pollen Transport

  • Chapter
  • First Online:

Abstract

This chapter reviews the present knowledge and previous developments concerning the pollen transport in the atmosphere. Numerous studies are classified according to the spatial scales of the applications, key processes considered, and the methodology involved. Space-wise, local, regional and long-range scales are distinguished. An attempt of systematization is made towards the key processes responsible for the observed patterns: initial dispersion of pollen grains in the nearest vicinity of the sources at micro-scale, transport with the wind, mixing inside the atmospheric boundary layer and dry and wet removal at the regional scale, and the long-range dispersion with synoptic-scale wind, exchange between the boundary layer and free troposphere, roles of dry and wet removal, interactions with chemicals and solar radiation at the large scales.

Atmospheric dispersion modelling can pursue two goals: estimation of concentrations from known source (forward problem), and the source apportionment (inverse problem). Historically, the inverse applications were made first, mainly using the simple trajectory models. The sophisticated integrated systems capable of simulating all main processes of pollen lifecycle have been emerging only during last decade using experience of the atmospheric chemical composition modelling.

Several studies suggest the allergen existence in the atmosphere separately from the pollen grains – as observed in different parts of the world. However, there is no general understanding of the underlying processes, and the phenomenon itself is still debated. Another new area with strongly insufficient knowledge is the interactions of airborne allergens and chemical pollutants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aina, R., Asero, R., Ghiani, A., Marconi, G., Albertini, E., & Citterio, S. (2010). Exposure to cadmium-contaminated soils increases allergenicity of Poa annua L. pollen. Allergy, 65, 1313–1321. ALL2364 [pii], 10.1111/j.1398-9995.2010.02364.x [doi].

    CAS  Google Scholar 

  • Alché, J. D., Castro, A. J., & Rodriguez-García, M. I. (2002). Localization of transcripts corresponding to the major allergen from olive pollen (Ole e I) by electron microscopic non-radioactive in situ RT-PCR. Micron, 33, 33–37.

    Google Scholar 

  • Arritt, R. W., Clark, C. A., Goggi, S., Lopez Sanchez, H., Westgate, M. E., & Riese, J. M. (2007). Lagrangian numerical simulations of canopy air flow effects on maize pollen dispersal. Field Crops Research, 102, 151–162.

    Google Scholar 

  • Ashbaugh, L. L. (1983). A statistical trajectory technique for determining air pollution source regions. Journal of the Air Pollution Control Association, 33, 1096–1098.

    Google Scholar 

  • Aylor, D. E., Schultes, N. P., & Shields, E. J. (2003). An aerobiological framework for assessing cross-pollination in maize. Agricultural and Forest Meteorology, 119, 111–129.

    Google Scholar 

  • Aylor, D. E., Boehm, M. T., & Shields, E. J. (2006). Quantifying aerial concentrations of maize pollen in the atmospheric surface layer using remote-piloted airplanes and Lagrangian stochastic modelling. Journal of Applied Meteorology and Climatology, 45, 1003–1015.

    Google Scholar 

  • Behrendt, H., & Becker, W.-F. (2001). Localization, release and bioavailability of pollen allergens: The influence of environmental factors. Current Opinion in Immunology, 13, 709–715.

    CAS  Google Scholar 

  • Behrendt, H., Becker, W. M., Fritzsche, C., Sliwa-Tomczok, W., Tomczok, J., Friedrichs, K. H., & Ring, J. (1997). Air pollution and allergy: Experimental studies on modulation of allergen release from pollen by air pollutants. International Archives of Allergy and Immunology, 113, 69–74.

    CAS  Google Scholar 

  • Behrendt, H., Tomczok, J., Sliwa-Tomczok, W., Kasche, A., Ebner von Eschenbach, C., Becker, W. M., & Ring, J. (1999). Timothy grass (Phleum pratense L.) pollen as allergen carriers and initiators of an allergic response. International Archives of Allergy and Immunology, 118, 414–418.

    CAS  Google Scholar 

  • Belmonte, J., Vendrell, M., Roure, J. M., Vidal, J., Botey, J., & Cadahía, A. (2000). Levels of Ambrosia pollen in the atmospheric spectra of Catalan aerobiological stations. Aerobiologia, 16, 93–99.

    Google Scholar 

  • Belmonte, J., Alarcón, M., Avila, A., Scialabba, E., & Pino, D. (2008). Long-range transport of beech (Fagus sylvatica L.) pollen to Catalonia (north-eastern Spain). International Journal of Biometeorology, 52, 675–687. doi:10.1007/s00484-008-0160-9.

    CAS  Google Scholar 

  • Bergamaschi, P., Krol, M., Dentener, F., Vermeulen, A., Meinhardt, F., Graul, R., Ramonet, M., Peters, W., & Dlugokencky, E. J. (2005). Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5. Atmospheric Chemistry and Physics, 5, 2431–2460.

    CAS  Google Scholar 

  • Boehm, M. T., Aylor, D. E., & Shields, E. J. (2008). Maize pollen dispersal under convective conditions. Journal of Applied Meteorology and Climatology, 47, 291–307.

    Google Scholar 

  • Bohrerova, Z., Bohrer, G., Cho, K. D., Bolch, M. A., & Linden, K. G. (2009). Determining the viability response of pine pollen to atmospheric conditions during long-distance dispersal. Ecological Applications, 19(3), 656–667.

    Google Scholar 

  • Bourgeois, J. C. (2000). Seasonal and interannual pollen variability in snow layers of arctic ice caps. Review of Palaeobotany and Palynology, 108, 17–36.

    Google Scholar 

  • Bricchi, E., Frenguelli, G., & Mincigrucci, G. (2000). Experimental results about Platanus pollen deposition. Aerobiologia, 16, 347–352.

    Google Scholar 

  • Brown, J. K. M., & Hovmoller, M. S. (2002). Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297, 537–541.

    CAS  Google Scholar 

  • Brunet, Y., Foueillassar, X., Audran, A., Garrigou, D., & Dayau, S. (2004). Evidence for long-range transport of viable maize pollen. Reprints, 16th Conference on Biometeorology and Aerobiology. Vancouver, Canada. American Meteorological Society, CD-ROM, P4A.2.

    Google Scholar 

  • Burczyk, J., DiFazio, S. P., & Adams, W. T. (2004). Gene flow in forest trees: How far do genes really travel? Forest Genetics, 11, 1–14.

    Google Scholar 

  • Busse, W. W., Charles, E. R., & Hoehne, J. H. (1972). Where is the allergic reaction in ragweed asthma? II. Demonstration of ragweed antigen in airborne particles smaller than pollen. The Journal of Allergy and Clinical Immunology, 50, 289–293.

    CAS  Google Scholar 

  • Buters, J. T., Weichenmeier, I., Ochs, S., Pusch, G., Kreyling, W., Boere, A. J., Schober, W., & Behrendt, H. (2010). The allergen Bet v 1 in fractions of ambient air deviates from birch pollen counts. Allergy, 65(7), 850–858. doi:ALL2286 [pii], 10.1111/j.1398-9995.2009.02286.x.

    CAS  Google Scholar 

  • Cabezudo, B., Recio, M., Sanchez-Laulhe, J. M., Trigo, M. M., Toro, F. J., & Polvorinos, F. (1997). Atmospheric transportation of marihuana pollen from North Africa to the southwest of Europe. Atmospheric Environment, 31, 3323–3328.

    CAS  Google Scholar 

  • Campbell, I. D., McDonald, K., Flannigan, M. D., & Kringayark, J. (1999). Long-distance transport of pollen into the Arctic. Nature, 399, 29–30.

    CAS  Google Scholar 

  • Cariñanos, P., Galán, C., Alcázar, P., & Domínguez, E. (2004). Analysis of the particles transported with dust-clouds reaching Córdoba, southwestern Spain. Archives of Environmental Contamination and Toxicology, 46, 141–146.

    Google Scholar 

  • Cecchi, L., Morabito, M., Paola Domeneghetti, M., Crisci, A., Onorari, M., & Orlandini, S. (2006). Long distance transport of ragweed pollen as a potential cause of allergy in central Italy. Annales of Allergy Asthma and Immunology, 96, 86–91.

    Google Scholar 

  • Cecchi, L., Torrigiani Malaspina, T., Albertini, R., Zanca, M., Ridolo, E., Usberti, I., Morabito, M., Dall’ Aglio, P., & Orlandini, S. (2007). The contribution of long-distance transport to the presence of Ambrosia pollen in central northern Italy. Aerobiologia, 23, 145–151.

    Google Scholar 

  • Chamecki, M., Meneveau, C., & Parlange, M. B. (2009). Large eddy simulation of pollen transport in the atmospheric boundary layer. Journal of Aerosol Science, 40, 241–255.

    CAS  Google Scholar 

  • Clot, B., Schneiter, D., Tercier, Ph, Gehrig, R., Peeters, A., Thibaudon, M., & Clot, B. (2002). Ambrosia pollen in Switzerland: Local production or transport? Allergie et Immunologie, 34, 126–128.

    CAS  Google Scholar 

  • Dahl, A., Strandhede, S.-V., & Wihl, J.-A. (1999). Ragweed: An allergy risk in Sweden? Aerobiologia, 15, 293–297.

    Google Scholar 

  • Damialis, A., Gioulekas, D., Lazopoulou, C., Balafoutis, C., & Vokou, D. (2005). Transport of airborne pollen into the city of Thessaloniki: The effects of wind direction, speed and persistence. International Journal of Biometeorology, 49, 139–145.

    Google Scholar 

  • Danielsen, E. F. (1961). Trajectories: Isobaric, isentropic and actual. Journal of Meteorology, 18, 479–486.

    Google Scholar 

  • Davis, J. M., Main, C. E. (1984). A regional analysis of the meteorological aspects of the spread and development of blue mold on tobacco. Boundary-Layer Meteorology, 28, 271–304.

    Google Scholar 

  • Davis, J. M., Main, C. E. (1986). Applying atmospheric trajectory analysis to problems in epidemiology. Plant Disease, 70, 490–497.

    Google Scholar 

  • Davidson, A. (1941). A note on anthesis in some common grasses near Johannesburg, and the relation of anthesis to collection of pollen for medical purposes. Journal of South African Botany, 7, 145–152.

    Google Scholar 

  • Di-Giovanni, F., & Kevan, P. G. (1991). Factors affecting pollen dynamics and its importance to pollen contamination: A review. Canadian Journal of Forest Research, 21, 1155–1170.

    Google Scholar 

  • Draxler, R. R., Hess, G. D. (2010). Description of the HYSPLIT_4 modelling system. NOAA Technical Memorandum ERL ARL-224NOAA Air Resources Laboratory; 27 pp. http://www.arl.noaa.gov/ready/hysplit4.html, http://www.arl.noaa.gov/documents/reports/arl-224.pdf. Last access 25 July 2012.

  • Efstathiou, C., Isukapalli, S., & Georgopoulos, P. (2011). A mechanistic modelling system for estimating large-scale emissions and transport of pollen and co-allergens. Atmospheric Environment 45(13), 2260–2276. [online] Available from: http://dx.crossref.org/10.1016%2Fj.atmosenv.2010.12.008 (last access 25.07.2012).

  • Ellstrand, N. C. (1992). Gene flow by pollen: Implications for plant conservation genetics. Oikos, 63, 77–86.

    Google Scholar 

  • Ennos, R. A. (1994). Estimating the relative rates of pollen and seed migration among plant-populations. Heredity, 72, 250–259.

    Google Scholar 

  • Estrella, N., Menzel, A., Krämer, U., & Behrendt, H. (2006). Integration of flowering dates in phenology and pollen counts in aerobiology: Analysis of their spatial and temporal coherence in Germany (1992-1999). International Journal of Biometeorology, 54, 49–59.

    Google Scholar 

  • European Environment Agency. (2002). Genetically modified organisms (GMOs): The significance of gene flow through pollen transfer. Environmental Issue Report No 28, ISBN: 92-9167-411-7, Copenhagen, 75 pp. http://www.eea.europa.eu/publications/environmental_issue_report_2002_28 (last access 25.07.2012).

    Google Scholar 

  • Faegri, K., Iversen, J., & Krzywinski, K. (1989). Textbook of pollen analysis. Toronto: Wiley. 328 pp.

    Google Scholar 

  • Fotiou, C., Damialis, A., Krigas, N., Halley, J. M., & Vokou, D. (2010). Parietaria judaica flowering phenology, pollen production, viability and atmospheric circulation, and expansive ability in the urban environment: Impacts of environmental factors. International Journal of Biometeorology, 55, 35–50. doi:10.1007/s00484-010-0307-3.

    Google Scholar 

  • Fraile, R., Calvo, A. I., Castro, A., Fernandez-Gonzalez, D., & Garcıa-Ortega, E. (2006). The behavior of the atmosphere in long-range transport. Aerobiologia, 22, 35–45.

    Google Scholar 

  • Franze, T., Weller, M. G., Niessner, R., & Poschl, U. (2005). Protein nitration by polluted air. Environmental Science and Technology, 39, 1673–1678.

    CAS  Google Scholar 

  • Franzen, L. (1989). A dustfall episode on the Swedish west-coast, October 1987. Geografiska Annaler Series A, Physical Geography, 71, 263–267.

    Google Scholar 

  • Franzen, L., & Hjelmroos, M. (1988). A coloured snow episode on the Swedish west coast, January 1987. A quantitative study of air borne particles. Geografiska Annaler Series A, Physical Geography, 70, 235–243.

    Google Scholar 

  • Franzen, L., Hjelmroos, M., Kallberg, P., Brorstromlunden, E., Juntto, S., & Savolainen, A. L. (1994). The yellow-snow episode of northern Fennoscandia, March-1991: A case-study of long-distance transport of soil, pollen and stable organic-compounds. Atmospheric Environment, 28, 3587–3604.

    CAS  Google Scholar 

  • Gage, S., Isard, S. A., & Colunga, G. M. (1999). Ecological scaling of aerobiological dispersal processes. Agricultural and Forest Meteorology, 97, 249–261.

    Google Scholar 

  • Garrison, V. H., Shinn, E. A., Foreman, W. T., Griffin, D. W., Holmes, C. W., Kellogg, C. A., Majewski, M. S., Richardson, L. L., Ritchie, K. B., & Smith, G. W. (2003). African and Asian dust: From desert soils to coral reefs. Bioscience, 53, 469–480.

    Google Scholar 

  • Garrison, V. H., Foreman, W. T., Genualdi, S., Griffin, D. W., Kellogg, C. A., Majewski, M. S., Mohammed, A., Ramsubhag, A., Shinn, E. A., Simonich, S. L., & Smith, G. W. (2006). Saharan dust – a carrier of persistent organic pollutants, metals and microbes to the Caribbean? Revista Biologia Tropical (Int. J. Trop. Biol. ISSN-0034-7744) 54(3), 9–21.

    Google Scholar 

  • Gassmann, M. I., & Pérez, C. F. (2006). Trajectories associated to regional and extra-regional pollen transport in the southeast of Buenos Aires province, Mar Del Plata (Argentina). International Journal of Biometeorology, 50, 280–291. doi:10.1007/s00484-005-0021-8.

    Google Scholar 

  • Gehrig, R., & Peeters, A. G. (2000). Pollen distribution at elevations above 1000 m in Switzerland. Aerobiologia, 16, 69–74.

    Google Scholar 

  • Gilles, S., Jacoby, D., Blume, C., Mueller, M. J., Jakob, T., Behrendt, H., Schaekel, K., & Traidl-Hoffmann, C. (2010). Pollen-derived low-molecular weight factors inhibit 6-sulfo LacNAc  +  ­dendritic cells’ capacity to induce T-helper type 1 responses. Clinical and Experimental Allergy, 40, 269–278. doi:CEA3369 [pii], 10.1111/j.1365-2222.2009.03369.x.

    CAS  Google Scholar 

  • Giner, M. M., Garcia, C. J. S., & Selles, G. J. (1999). Aerobiology of Artemisia airborne pollen in Murcia (SE Spain) and its relationship with weather variables: Annual and intradiurnal variations for three different species. Wind vectors as a tool in determining pollen origin. International Journal of Biometeorology, 43, 51–63.

    Google Scholar 

  • Gleaves, J. T. (1973). Gene flow mediated by wind-borne pollen. Heredity, 31, 355–366.

    Google Scholar 

  • Gorbushina, A. A., Kort, R., Schuite, A., Lazarus, D., Schnetger, B., Brumsack, H., Broughton, W. J., & Favet, J. (2007). Life in Darwin’s dust: Intercontinental transport and survival of microbes in the nineteenth century. Environmental Microbiology, 9(12), 2911–2922. doi:10.1111/j.1462-2920.20.2007.01461.x.

    CAS  Google Scholar 

  • Goudie, A. S., & Middleton, N. J. (2001). Saharan dust storms: Nature and consequences. Earth-Science Reviews, 56, 179–204.

    CAS  Google Scholar 

  • Govindaraju, D. R. (1988). Relationship between dispersal ability and levels of gene flow in plants. Oikos, 52, 31–35.

    Google Scholar 

  • Govindaraju, D. R. (1989). Estimates of gene flow in forest trees. Biological Journal of the Linnean Society, 37, 345–357.

    Google Scholar 

  • Gregory, P. H. (1961). The microbiology of the atmosphere. New York: Interscience. 251 pp.

    Google Scholar 

  • Griffin, D. W. (2004). Terrestrial microorganism at an altitude of 20,000 m in Earth’s atmosphere. Aerobiologia, 20, 135–140.

    Google Scholar 

  • Griffin, D. W. (2007). Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical Microbiology Reviews, 20, 459–477.

    Google Scholar 

  • Griffin, D. W., & Kellogg, C. A. (2004). Dust storms and their impact on ocean and human health: Dust in Earth’s atmosphere. EcoHealth, 1, 284–295.

    Google Scholar 

  • Griffin, D. W., Kellogg, C. A., & Shinn, E. A. (2001a). Dust in the wind: Long range transport of dust in the atmosphere and its implications for global public and ecosystems health. Global Change and Human Health, 2, 20–33.

    Google Scholar 

  • Griffin, D. W., Garrison, V. H., Herman, J. R., & Shinn, E. (2001b). African desert dust in the Caribbean atmosphere: Microbiology and public health. Aerobiologia, 17, 203–213.

    Google Scholar 

  • Griffin, D. W., Kellogg, C. A., Garrison, V. H., Lisle, J. T., Borden, T. C., & Shinn, E. A. (2003). Atmospheric microbiology in the northern Caribbean during African dust events. Aerobiologia, 19, 143–157.

    Google Scholar 

  • Griffin, D. W., Westplhal, D. L., & Gray, M. A. (2006). Airborne microorganisms in the African desert dust corridor over the mid-Atlantic ridge, Ocean Drilling Program, Leg 209. Aerobiologia, 22, 211–226. doi:10.1007/s10453-006-9033-z.

    Google Scholar 

  • Griffin, D. W., Kubilay, N., Koçak, M., Gray, M. A., Borden, T. C., & Shinn, E. A. (2007). Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coastline. Atmospheric Environment, 41, 4050–4062.

    CAS  Google Scholar 

  • Grote, M., Vrtala, S., Niederberger, V., Valenta, R., & Reichelt, R. (2000). Expulsion of allergen-containing materials from hydrated rye grass (Lolium perenne) pollen revealed by using immunogold field emission scanning and transmission electron microscopy. The Journal of Allergy and Clinical Immunology, 105, 1140–1145.

    CAS  Google Scholar 

  • Grote, M., Vrtala, S., Niederberger, V., Wierman, R., Valenta, R., & Reichelt, R. (2001). Release of allergen-bearing cytoplasm from hydrated pollen: A mechanism common to variety of grass (Poaceae) species revealed by electron microscopy. The Journal of Allergy and Clinical Immunology, 108, 109–115.

    CAS  Google Scholar 

  • Grote, M., Valenta, R., & Reichelt, R. (2003). Abortive pollen germination: A mechanism of allergen release in birch, alder and hazel revealed by immunogold electron microscopy. The Journal of Allergy and Clinical Immunology, 111, 1017–1023.

    Google Scholar 

  • Guerzoni, S., & Chester, R. (1996). The impact of desert dust across the Mediterranean. Dordrecht: Kluwer Academic Publishers. 389 pp.

    Google Scholar 

  • Gunawan, H., Takai, T., Kamijo, S., Wang, X. L., Ikeda, S., Okumura, K., & Ogawa, H. (2008). Characterization of proteases, proteins, and eicosanoid-like substances in soluble extracts from allergenic pollen grains. International Archives of Allergy and Immunology, 147, 276–288. doi:000144035 [pii] 10.1159/000144035 [doi].

    CAS  Google Scholar 

  • Gupta, N., Sriramarao, P., Kori, R., & Rao, P. V. (1995). Immunochemical characterization of rapid and slowly released allergens from the pollen of Parthenium hysterophorus. International Archives of Allergy and Immunology, 107, 557–565.

    CAS  Google Scholar 

  • Hart, M. A., de Dear, R., & Beggs, P. J. (2007). A synoptic climatology of pollen concentrations during the six warmest months in Sydney, Australia. International Journal of Biometeorology, 51, 209–220.

    Google Scholar 

  • Helbig, N., Vogel, B., Vogel, H., & Fiedler, F. (2004). Numerical modelling of pollen dispersion on the regional scale. Aerobiologia, 20(1), 3–19.

    Google Scholar 

  • Hervàs, A., Camarero, L., Reche, I., & Casamayor, E. O. (2009). Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environmental Microbiology, 11(6), 1612–1623.

    Google Scholar 

  • Hicks, S. (1985). Modern pollen deposition records from Kuusamo, Finland. Grana, 24, 167–184.

    Google Scholar 

  • Hicks, S. H., Tinsley, A., Huusko, C., Jensen, M., Hättestrand, M., Gerasimedes, A., & Kvavadze, E. (2001). Some comments on spatial variation in arboreal pollen deposition: First records from the Pollen Monitoring Programme (PMP). Review of Palaeobotany and Palynology, 117, 183–194.

    Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39(2), 257–265.

    Google Scholar 

  • Høgda, K. A., Karlsen, S. R., Solheim, I., Tommervik, H., & Ramfjord, H. (2002). The start dates of birch pollen seasons in Fennoscandia studied by NOAA AVHRR NDVI data. Proceeding of IGARSS. June 24–28, 2002, Toronto. ISBN 0-7803-7536-X.

    Google Scholar 

  • Hooghiemstra, H., Lezine, A. M., Leroy, S. A. G., Dupont, L., & Marret, F. (2006). Late quaternary palynology in marine sediments: A synthesis of the understanding of pollen distribution patterns in the NW African setting. Quaternary International, 148, 29–44.

    Google Scholar 

  • Hua, N., Kobayashi, F., Iwasaka, Y., Shi, G., & Naganuma, T. (2007). Detailed identification of desert-originated bacteria carried by Asian dust storms to Japan. Aerobiologia, 23, 291–298.

    Google Scholar 

  • Isard, S. A., & Gage, S. H. (2001). Flow of life in the atmosphere: An airscape approach to understanding invasive organisms. East Lansing: Michigan State University Press. 240 pp.

    Google Scholar 

  • Isard, S. A., Gage, S. H., Comtois, P., & Russo, J. M. (2005). Principles of the atmospheric pathway for invasive species applied to soybean rust. Bioscience, 55(10), 851–861.

    Google Scholar 

  • Izquierdo, R., Belmonte, J., Avila, A., Alarcón, M., Cuevas, E., & Alonso-Pérez, S. (2011). Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands). International Journal of Biometeorology, 55(1), 67–85. doi: 10.1007/s00484-010-0309-1.

    Google Scholar 

  • Janssen, C. R. (1973). Local and regional pollen deposition. In J. H. B. Birks & R. G. West (Eds.), Quaternary plant ecology (pp. 30–43). Oxford: Blackwell Scientific.

    Google Scholar 

  • Jarosz, N., Loubet, B., Durand, B., McCartney, A., Foueillassar, X., & Huber, L. (2003). Field measurements of airborne concentration and deposition rate of maize pollen. Agricultural and Forest Meteorology, 119, 37–51.

    Google Scholar 

  • Jarosz, N., Loubet, B., & Huber, L. (2004). Modelling airborne concentrations and deposition rate of maize pollen. Atmospheric Environment, 38, 5555–5566.

    CAS  Google Scholar 

  • Kasprzyk, I. (2008). Non-native Ambrosia pollen in the atmosphere of Rzeszow (SE Poland); Evaluation of the effect of weather conditions on daily concentrations and starting dates of the pollen season. International Journal of Biometeorology, 52, 341–351. doi:10.1007/s00484-007-0129.

    Google Scholar 

  • Kasprzyk, I., Myszkowska, D., Grewling, Ł., Stach, A., Šikoparija, B., Skjøth, C. A., & Smith, M. (2010). The occurrence of Ambrosia pollen in Rzeszów, Kraków and Poznań, Poland: Investigation of trends and possible transport of Ambrosia pollen from Ukraine. International Journal of Biometeorology. doi:10.1007/s00484-010-0376-3.

  • Kawashima, S., & Takahashi, Y. (1999). An improved simulation of mesoscale dispersion of airborne cedar pollen using a flowering-time map. Grana, 38, 316–324.

    Google Scholar 

  • Kazlauskas, M., Sauliene, I., & Lankauskas, A. (2006). Airborne Artemisia pollen in Siauliai (Lithuania) atmosphere with reference to meteorological factors during 2003-2005. Acta Biologica Universitatis, 6, 1–2.

    Google Scholar 

  • Kellogg, C. A., & Griffin, D. W. (2006). Aerobiology and the global transport of desert dust. Trends in Ecology & Evolution, 21, 638–644.

    Google Scholar 

  • Kellogg, C. A., Griffin, D. W., Garrison, V. H., Peak, K. K., Royall, N., Smith, R. R., & Shinn, E. A. (2004). Characterization of aerosolized bacteria and fungi from desert dust events in Mali, West Africa. Aerobiologia, 20, 99–110.

    Google Scholar 

  • Klein, E. K., Lavigne, C., Foueilassar, X., Gouyon, P. H., & Laredo, C. (2003). Corn pollen dispersal: Quasi-mechanistic models and field experiments. Ecological Monographs, 73, 131–150.

    Google Scholar 

  • Knox, R. B., Suphioglu, C., Taylor, P., Desai, R., Watson, H. C., Peng, J. L., & Bursill, L. A. (1997). Major grass pollen allergen Lol p 1 binds to diesel exhaust particles: Implications for asthma and air pollution. Clinical and Experimental Allergy, 27, 246–251.

    CAS  Google Scholar 

  • Kuparinen, A. (2006). Mechanistic models for wind dispersal. Trends in Plant Science, 11, 298–301.

    Google Scholar 

  • Kuparinen, A., Markkanen, T., Riikonen, H., & Vesala, T. (2007). Modelling air-mediated dispersal of spores, pollen and seeds in forested areas. Ecological Modelling, 208, 177–188.

    Google Scholar 

  • Laursen, S. C., Reiners, W. A., Kelly, R. D., & Gerow, K. G. (2007). Pollen dispersal by Artemisia tridentata (Asteraceae). International Journal of Biometeorology, 51, 465–481.

    CAS  Google Scholar 

  • Lee, A. K. Y., Lau, A. P. S., Cheng, J. Y. W., Fang, M., & Chan, C. K. (2007). Source identification analysis for the airborne bacteria and fungi using a biomarker approach. Atmospheric Environment, 41, 2831–2843.

    CAS  Google Scholar 

  • Lewis, S. A., Corden, J. M., Forster, G. E., & Newlands, M. (2000). Combined effects of aerobiological pollutants, chemical pollutants and meteorological conditions on asthma admissions and A & E attendances in Derbyshire UK, 1993-96. Clinical and Experimental Allergy, 30, 1724–1732.

    CAS  Google Scholar 

  • Linkosalo, T., Ranta, H., Oksanen, A., Siljamo, P., Luomajoki, A., Kukkonen, J., & Sofiev, M. (2010). A double-threshold temperature sum model for predicting the flowering duration and relative intensity of Betula pendula and B. pubescens. Agricultural and Forest Meteorology, 150(12), 1579–1584.

    Google Scholar 

  • Linskens, H. F., & Cresti, M. (2000). Pollen allergy as an ecological phenomenon: A review. Plant Biosystems, 134(3), 341–352.

    Google Scholar 

  • Mahura, A., Korsholm, S. U., Baklanov, A. A., & Rasmussen, A. (2007). Elevated birch pollen episodes in Denmark: Contributions from remote sources. Aerobiologia, 23, 171–179.

    Google Scholar 

  • Mahura, A., Baklanov, A., & Korsholm, U. (2009). Parameterization of the birch pollen diurnal cycle. Aerobiologia, 25, 203–208.

    Google Scholar 

  • Makra, L., & Palfi, S. (2007). Intra-regional and long-range ragweed pollen transport over southern Hungary. Acta Climatologica Et Chorologica, 40–41, 69–77.

    Google Scholar 

  • Marchuk, G. I. (1982). Mathematical modelling in the environmental problems. Moscow: “Nauka” publisher. 320 pp, (in Russian).

    Google Scholar 

  • Marks, G. B., Colquhoun, J. R., Girgis, S. T., Koski, M. H., Treloar, A. B., Hansen, P., Downs, S. H., & Car, N. G. (2001). Thunderstorm outflows preceding epidemics of asthma during spring and summer. Thorax, 56, 468–471.

    CAS  Google Scholar 

  • Matikainen, E., & Rantio-Lehtimaki, A. (1999). Semiquantitative and qualitative analysis of pre seasonal airborne birch pollen allergens in different particle sizes. Grana, 37, 293–297.

    Google Scholar 

  • McCartney, H. A., & Lacey, M. E. (1991). Wind dispersal of pollen from crops of oilseed rape (Brassica napus L.). Journal of Aerosol Science, 22, 467–477.

    Google Scholar 

  • Michel, D., Rotach, M. W., Gehrig, R., & Vogt, R. (2010). Experimental investigation of micrometeorological influences on birch pollen emission. Arbeitsberichte der MeteoSchweiz, 230, 37 pp.

    Google Scholar 

  • Miguel, A. G., Taylor, P. E., House, J., Glovsky, M. M., & Flagan, R. C. (2006). Meteorological influences on respirable fragment release from Chinese Elm pollen. Aerosol Science and Technology, 40(9), 690–696.

    CAS  Google Scholar 

  • Moar, N. T. (1969). Possible long-distance transport of pollen to New Zealand. New Zealand Journal of Botany, 7, 424–426.

    Google Scholar 

  • Motta, A. C., Marliere, M., Peltre, G., Sterenberg, P. A., & Lacroix, G. (2006). Traffic-related air pollutants induce the release of allergen-containing cytoplasmic granules from grass pollen. International Archives of Allergy and Immunology, 139, 294–298.

    CAS  Google Scholar 

  • Nichols, H. (1967). Pollen diagrams from Sub-Arctic Central Canada. Science, 155, 1665–1668.

    CAS  Google Scholar 

  • Novotny, E., & Perdang, J. (2003). Simulations of pollen transport by wind. SGR (Scientist for Global Responsibility), 3 pp.

    Google Scholar 

  • Oikonen, M., Hicks, S., Heino, S., & Rantio-Lehtimaki, A. (2005). The start of the birch pollen season in Finnish Lapland: Separating non-local from local birch pollen and the implication for allergy sufferers. Grana, 44, 181–186.

    Google Scholar 

  • Pacini, E., & Hesse, M. (2004). Cytophysiology of pollen presentation and dispersal. Flora, 199, 273–285.

    Google Scholar 

  • Pacini, E., Guarnieri, M., & Nepi, M. (2006). Pollen carbohydrates and water content during development, presentation and dispersal: A short review. Protoplasma, 228, 73–77.

    CAS  Google Scholar 

  • Pasken, R., & Pietrowicz, J. A. (2005). Using dispersion and mesoscale meteorological models to forecast pollen concentrations. Atmospheric Environment, 39, 7689–7701.

    CAS  Google Scholar 

  • Paz, S., & Broza, M. (2007). Wind direction and its linkage with Vibrio cholerae dissemination. Environmental Health Perspectives, 115(2), 195–200.

    Google Scholar 

  • Peeters, A. G., & Zoller, H. (1988). Long range transport of Castanea sativa pollen. Grana, 27, 203–207.

    Google Scholar 

  • Peltre, G., Derouet, L., & Cerceau-Larrival, M. T. (1991). Model treatments simulating environmental action on allergenic Dactylis glomerata pollen. Grana, 30, 59–61.

    Google Scholar 

  • Pérez-Landa, G., Ciais, P., Gangoiti, G., Palau, J. L., Carrara, A., Gioli, B., Miglietta, F., Schumacher, M., Millán, M. M., & Sanz, M. J. (2007a). Mesoscale circulations over complex terrain in the Valencia coastal region, Spain – Part 2: Modeling CO2 transport using idealized surface fluxes. Atmospheric Chemistry and Physics, 7, 1851–1868.

    Google Scholar 

  • Pérez-Landa, G., Ciais, P., Sanz, M. J., Gioli, B., Miglietta, F., Palau, J. L., Gangoiti, G., & Millán, M. M. (2007b). Mesoscale circulations over complex terrain in the Valencia coastal region, Spain – Part 1: Simulation of diurnal circulation regimes. Atmospheric Chemistry and Physics, 7, 1835–1849.

    Google Scholar 

  • Polymenakou, P. N., Mandalakis, M., Stephanou, E. G., & Tselepides, A. (2008). Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the Eastern Mediterranean. Environmental Health Perspectives, 116, 292–296.

    Google Scholar 

  • Porsbjerg, C., Rasmussen, A., & Backer, A. (2003). Airborne pollen in Nuuk, Greenland, and the importance of meteorological parameters. Aerobiologia, 19, 29–37.

    Google Scholar 

  • Prank, P., Sofiev, M., Kaasik, M., Ruuskanen, T., Kukkonen, J., & Kulmala, M. (2008). The origin and formation mechanics of aerosol during a measurement campaign in Finnish Lapland, evaluated using the regional dispersion model SILAM. In C. Borrego & A. I. Miranda (Eds.), Air pollution modeling and its application XIX (NATO science for peace and security series-C: Environmental security, pp. 530–538). Berlin: Springer.

    Google Scholar 

  • Prank, M., Sofiev, M., Denier van der Gon, H. A. C., Kaasik, M., Ruuskanen, T., & Kukkonen, J. (2010). A refinement of the emission data for Kola Peninsula based on inverse dispersion modelling. Atmospheric Chemistry and Physics Discussions, 10, 15963–16006.

    Google Scholar 

  • Prospero, J. M., Barett, K., Churcha, T., Dentener, F., Duce, R. A., Galloway, J. N., Levy, H., II, Moody, J., & Quinn, P. (1996). Atmospheric deposition of nutrients to the North Atlantic Basin. Biogeochemistry, 35, 27–73.

    CAS  Google Scholar 

  • Prospero, J. M., Blades, E., Mathison, G., & Naidu, R. (2005). Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia, 21, 1–19.

    Google Scholar 

  • Pulimood, T. B., Corden, J. M., Bryden, C., Sharples, L., & Nasser, S. M. (2007). Epidemic asthma and the role of the fungal mold Alternaria alternata. The Journal of Allergy and Clinical Immunology, 120, 610–617. doi:S0091-6749(07) 00970-0 [pii], 10.1016/j.jaci.2007.04.045 [doi].

    Google Scholar 

  • Radauer, C., Bublin, M., Wagner, S., Mari, A., & Breiteneder, H. (2008). Allergens are distributed into few protein families and possess a restricted number of biochemical functions. The Journal of Allergy and Clinical Immunology, 121, 847.e7–852.e7. DOI: S0091-6749(08)00163-2.

    Google Scholar 

  • Rannik, U., Markkanen, T., Raittila, J., Hari, P., & Vesala, T. (2003). Turbulence statistics inside and over forest: Influence on footprint prediction. Boundary-Layer Meteorology, 109, 163–189.

    Google Scholar 

  • Ranta, H., & Satri, P. (2007). Synchronised inter-annual fluctuations of flowering intensity affects the exposure to allergenic tree pollen in north Europe. Grana, 46(4), 274–284.

    Google Scholar 

  • Ranta, H., Kubin, E., Siljamo, P., Sofiev, M., Linkosalo, T., Oksanen, A., & Bondestam, K. (2006). Long distance pollen transport cause problems for determining the timing of birch pollen season in Fennoscandia by using phenological observations. Grana, 45(4), 297–304.

    Google Scholar 

  • Ranta, H., Sokol, C., Hicks, S., Heino, S., & Kubin, E. (2008). How do airborne and deposition pollen samplers reflect the atmospheric dispersal of different pollen types? An example from northern Finland. Grana, 47, 285–296.

    Google Scholar 

  • Rantio-Lehtimaaki, A., Viander, M., & Koivikko, A. (1994). Airborne birch pollen antigens in different particle sizes. Clinical and Experimental Allergy, 24, 23–28.

    Google Scholar 

  • Rantio-Lehtimaki, A. (2002). Siitepolyallergeenit sisalyss. Allergia & Asthma, 2, 25–27 (in Finnish).

    Google Scholar 

  • Rantio-Lehtimaki, A., & Matikainen, E. (2002). Pollen allergen reports help to understand preseason symptoms. Aerobiologia, 18, 135–140.

    Google Scholar 

  • Raynor, G. S., & Hayes, J. V. (1983). Testing of the air resources laboratories trajectory model on cases of pollen wet deposition after long-distance transport from known source regions. Atmospheric Environment, 17(2), 213–220.

    Google Scholar 

  • Raynor, G. S., Ogden, E. C., & Hayes, J. V. (1970). Dispersion and deposition of ragweed pollen from experimental sources. Journal of Applied Meteorology, 9, 885–895.

    Google Scholar 

  • Raynor, G. S., Ogden, E. C., & Hayes, J. V. (1972a). Dispersion and deposition of timothy pollen from experimental sources. Agricultural Meteorology, 9, 347–366.

    Google Scholar 

  • Raynor, G. S., Ogden, E. C., & Hayes, J. V. (1972b). Dispersion and deposition of corn pollen from experimental sources. Agronomy Journal, 64, 420–427.

    Google Scholar 

  • Risse, U., Tomczok, J., Huss-Marp, J., Darsow, U., & Behrendt, H. (2000). Health-relevant interaction between airborne particulate matter and aeroallergens (pollen). Journal of Aerosol Science, 31, 27–28.

    Google Scholar 

  • Ritchie, J. C. (1974). Modern pollen assemblages near arctic tree Line, Mackenzie Delta Region, Northwest-Territories. Canadian Journal of Botany, 52, 381–396.

    Google Scholar 

  • Ritchie, J. C., & Lichti-Federovich, S. (1967). Pollen dispersal phenomena in Arctic-Subarctic Canada. Review of Palaeobotany and Palynology, 3, 255–266.

    Google Scholar 

  • Rodríguez-García, M. I., Fernández, M. C., Alché, J. D., & Olmedilla, A. (1995). Endoplasmic reticulum as a storage site for allergenic proteins in pollen grains of several Oleaceae. Protoplasma, 187, 111–116. doi:10.1007/bf01280238.

    Google Scholar 

  • Rogerieux, F., Godfrin, D., Senechal, H., Motta, A. C., Marliere, M., Peltre, G., & Lacroix, G. (2007). Modifications of Phleum pratense grass pollen allergens following artificial exposure to gaseous air pollutants (O3, NO2, SO2). International Archives of Allergy and Immunology, 143, 127–134. doi:000099079 [pii] 10.1159/000099079 [doi].

    CAS  Google Scholar 

  • Rogers, C. A., & Levetin, E. (1998). Evidence of long-distance transport of mountain cedar pollen into Tulsa, Oklahoma. International Journal of Biometeorology, 42, 65–72.

    Google Scholar 

  • Romero, O. E., Dupont, L., Wyputta, U., Jahns, S., & Wefer, G. (2003). Temporal variability of fluxes of eolian-transported freshwater diatoms, phytoliths, and pollen grains off Cape Blanc as reflection of land-atmosphere-ocean interactions in northwest Africa. Journal of Geophysical Research-Oceans, 108(C5), 3153–3164. doi:10.1029/2000JC000375/2003.

    Google Scholar 

  • Rousseau, D. D., Duzer, D., Cambon, G. V., Jolly, D., Poulsen, U., Ferrier, J., Schevin, P., & Gros, R. (2003). Long distance transport of pollen to Greenland. Geophysical Research Letters, 30, 1765. doi:10.1029/2003GL017539.

    Google Scholar 

  • Rousseau, D. D., Duzer, D., Etienne, J.-L., Cambon, G., Jolly, D., Ferrier, J., & Schevin, P. (2004). Pollen record of rapidly changing air trajectories to the North Pole. Journal of Geophysical Research, 109, D06116. doi:10.1029/2003JD003985.

    Google Scholar 

  • Rousseau, D. D., Schevin, P., Duzer, D., Cambon, G., Ferrier, J., Jolly, D., & Poulsen, U. (2005). Pollen transport to southern Greenland: New evidences of a late spring long distance transport. Biogeosciences Discussions, 2(4), 709–715.

    Google Scholar 

  • Rousseau, D. D., Schevin, P., Duzer, D., Cambon, G. V., Ferrier, J., Jolly, D., & Poulsen, U. (2006). New evidence of long distance pollen transport to southern Greenland in late spring. Review of Palaeobotany and Palynology, 141, 277–286. doi:10.1016/j.revpalbo.2006.05.001.

    Google Scholar 

  • Rousseau, D. D., Schevin, P., Ferrier, J., Jolly, D., Andreasen, T., Ascanius, S. E., Hendriksen, S. E., & Poulsen, U. (2008). Long-distance pollen transport from North America to Greenland in spring. Journal of Geophysical Research-Biogeosciences, 113. doi:10.1029/2007JG000456.

  • Saarikoski, S., Sillanpää, M., Sofiev, M., Timonen, H., Saarnio, K., Teinilä, K., Karppinen, A., Kukkonen, J., & Hillamo, R. (2007). Chemical composition of aerosols during a major biomass burning episode over northern Europe in spring 2006: Experimental and modelling assessments. Atmospheric Environment, 41, 3577–3589.

    CAS  Google Scholar 

  • Salas, M. R. (1983). Long-distance pollen transport over the southern Tasman Sea: Evidence from Macquarie Island. New Zealand Journal of Botany, 21, 285–292.

    Google Scholar 

  • Saltbones, J., Bartnicki, J., & Foss, A. (2001). Handling of fallout processes from nuclear explosions in a severe nuclear accident program (SNAP). met.no report no. 157/2003, http://ebookbrowse.com/saltbones-pdf-d25441461 (last access 25.07.2012), 13 pp. (shortened English version).

    Google Scholar 

  • Šaulienė, I., & Veriankaitė, L. (2006). Application of backward air mass trajectory analysis in evaluating airborne pollen dispersion. Journal of Environmental Engineering and Landscape Management, 14(3), 113–120.

    Google Scholar 

  • Sauliene, I., Veriankaite, L., & Lankauskas, A. (2007). The analysis of the impact of long distance air mass to airborne pollen concentration. Cross-border cooperation in researches of biological diversity. Acta Biologica Universitatis Daugapiliensis Supplement, 1, 61–74.

    Google Scholar 

  • Savelieva, L. A., Dorozhkina, M. V., & Pavlova, E. Y. (2002). Modern annual deposition and aerial pollen transport in the Lena Delta. Polarforschung, 70, 115–122.

    Google Scholar 

  • Schäppi, G. F., Suphioglu, C., Taylor, P. E., & Knox, R. B. (1997). Concentrations of the major birch tree allergen Bet v 1 in pollen and respirable fine particles in the atmosphere. The Journal of Allergy and Clinical Immunology, 100, 656–661. doi:S0091-6749(97)70170-2.

    Google Scholar 

  • Schlesinger, P., Mamane, Y., & Grishkan, I. (2006). Transport of microorganisms to Israel during Saharan dust events. Aerobiologia, 22, 259–273. doi:10.1007/s10453-006-9038-7.

    Google Scholar 

  • Schmidt-Lebuhn, A. N., Seltmann, P., & Kessler, M. (2007). Consequences of the pollination system on genetic structure and patterns of species distribution in the Andean genus Polylepis (Rosaceae): A Comparative study. Plant Systematics and Evolution, 266, 91–103. doi:10.1007/s00606-007-0543-0.

    Google Scholar 

  • Schueler, S., & Schlünzen, K. H. (2006). Modelling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model. Environmental Modelling and Assessment, 11, 179–194.

    Google Scholar 

  • Seibert, P., Kromp-Kolb, H., Balterpensger, U., Jost, D.T., Schwikowski, M., Kasper A., Puxbaum, H. (1994). Trajectory analysis of aerosol measurements at high alpine sites. In P. M. Borrel, P. Borrell, T. Cvitas, W. Seiler (Eds.), Transport and transformation of pollutants in the troposphere (pp. 689–693). The Hague: Academic.

    Google Scholar 

  • Seibert, P., & Frank, A. (2004). Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode. Atmospheric Chemistry and Physics, 4, 51–63. http://www.atmos-chem-phys.net/4/51/2004/ (last access 25.07.2012).

    CAS  Google Scholar 

  • Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric chemistry and physics: From air pollution to climate change (2nd ed.). New York: Wiley Interscience, Wiley. 1203 pp.

    Google Scholar 

  • Shahali, Y., Pourpak, Z., Moin, M., Zare, A., & Majd, A. (2009). Impacts of air pollution exposure on the allergenic properties of Arizona cypress pollens. Journal of Physics Conference Series, 151, 012027. doi: 10.1088/1742-6596/151/1/012027.

    Google Scholar 

  • Sharma, C. M., & Khanduri, V. P. (2007). Pollen-mediated gene flow in Himalayan long needle pine (Pinus roxburghii Sargent). Aerobiologia, 23, 153–158. doi:10.1007/s10453-007-9056-0.

    Google Scholar 

  • Shinn, E. A., Griffin, D. W., & Seba, D. B. (2003). Atmospheric transport of mold spores in clouds of desert dust. Archives of Environmental Health, 58, 498–504.

    Google Scholar 

  • Šikoparija, B., Smith, M., Skjøth, C. A., Radišić, P., Milkovska, S., Šimić, S., & Brandt, J. (2009). The Pannonian plain as a source of Ambrosia pollen in the Balkans. International Journal of Biometeorology, 53, 263–272.

    Google Scholar 

  • Siljamo, P., Sofiev, M., & Ranta, H. (2004a). An approach to simulation of long-range atmospheric transport of natural allergens: An example of birch pollen. In C. Borrego & A. -L. Norman, (Eds.), Air pollution modelling and its applications XVII (pp. 331–340). New York: Springer (2007). ISBN-10: 0-387-28255-6.

    Google Scholar 

  • Siljamo, P., Sofiev, M., Ranta, H., Kalnina, L., & Ekebom, A. (2004b). Long-range atmospheric transport of birch pollen. Problem statement and feasibility studies. Proceedings of Baltic HIRLAM workshop, St. Petersburg, November 17–20, 2003. (pp. 100–103). HIRLAM publications, SMHI Norrkoping, Sweden.

    Google Scholar 

  • Siljamo, P., Sofiev, M., Severova, E., Ranta, H., & Polevova, S. (2006). On influence of long-range transport of pollen grains onto pollinating seasons. Developments in Environmental Science, 6. DOI: 10.1016/S1474-8177(70)06074-3. C. Borrego & E. Renner (Eds.). Air pollution modelling and its applications XVIII, (pp. 708–716) Amsterdam: Elsevier.

  • Siljamo, P., Sofiev, M., & Ranta, H. (2007). An approach to simulation of long-range atmospheric transport of natural allergens: An example of birch pollen. In C. Borrego & A.-L. Norman (Eds.), Air pollution modeling and its applications XVII, (pp. 331–339). New York: Springer.

    Google Scholar 

  • Siljamo, P., Sofiev, M., Ranta, H., Linkosalo, T., Kubin, E., Ahas, R., Genikhovich, E., Jatczak, K., Jato, V., Nekovar, J., Minin, A., Severova, E., & Shalaboda, V. (2008a). Representativeness of point-wise phenological Betula data observed in different parts of Europe. Global Ecology and Biogeography, 17(4), 489–502. doi:10.1111/j.1466-8238.2008.00383.x.

    Google Scholar 

  • Siljamo, P., Sofiev, M., Severova, E., Ranta, H., Kukkonen, J., Polevova, S., Kubin, E., & Minin, A. (2008b). Sources, impact and exchange of early-spring birch pollen in the Moscow region and Finland. Aerobiologia, 24, 211–230. doi:10.1007/s10453-008-9100-8.

    Google Scholar 

  • Siljamo, P., Sofiev, M., Linkosalo, T., Ranta, H., & Kukkonen, J. (2008c). Development and application of biogenic emission term as a basis of long-range transport of allergenic pollen. In C. Borrego & A. I. Miranda (Eds.), Air pollution modelling and its application XIX. NATO Science for Peace and Security Series C: Environmental Security (pp. 154–162). Dordrecht: Springer.

    Google Scholar 

  • Skjøth, C. A., Hertel, O., & Ellermann, T. (2002). Use of the ACDEP trajectory model in the Danish nation-wide background monitoring programme. Physics and Chemistry of the Earth, 27, 1469–1477.

    Google Scholar 

  • Skjøth, C. A., Sommer, J., Stach, A., Smith, M., & Brandt, J. (2007). The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clinical and Experimental Allergy, 37, 1204–1212.

    Google Scholar 

  • Skjøth, C. A., Geels, C., Hvidberg, M., Hertel, O., Brandt, J., Frohn, L. M., Hansen, K. M., Hedegard, G. B., Christensen, J. H., & Moseholm, L. (2008a). An inventory of tree species in European essential data input for air pollution modelling. Ecological Modelling, 217, 292–304.

    Google Scholar 

  • Skjøth, C. A., Sommer, J., Brandt, J., Hvidberg, M., Geels, C., Hansen, K. M., Hertel, O., Frohn, L. M., & Christensen, J. H. (2008b). Copenhagen – a significant source to birch (Betula) pollen? International Journal of Biometeorology, 52, 453–462.

    Google Scholar 

  • Skjøth, C. A., Smith, M., Brandt, J., & Emberlin, J. (2009). Are the birch trees in Southern England a source of pollen in North London? International Journal of Biometeorology, 53, 75–86.

    Google Scholar 

  • Skjøth, C. A., Smith, M., Sikoparija, B., Stach, A., Myszkowska, D., Kasprzyk, I., Radisic, P., Stjepanovic, B., Hrga, I., Apatini, D., Magyar, D., Páldy, A., & Ianovici, N. (2010). A method for producing airborne pollen source inventories: An example of Ambrosia (ragweed) on the Pannonian Plain. Agricultural and Forest Meteorology, 150, 1203–1210.

    Google Scholar 

  • Smith, M., Emberlin, J., & Kress, A. (2005). Examining high magnitude grass pollen episodes at Worcester, United Kingdom, using back-trajectory analysis. Aerobiologia, 21(2), 85–94.

    Google Scholar 

  • Smith, M., Skjøth, C. A., Myszkowska, D. A. U., Puc, M., Stach, A., Balwierz, Z., Chlopek, K., Piotrowska, K., Kasprzyk, I., & Brandt, J. (2008). Long-range transport of Ambrosia pollen to Poland. Agricultural and Forest Meteorology, 148, 1402–1411.

    Google Scholar 

  • Smouse, P., Dyer, R. J., Westfall, R. D., & Sork, V. L. (2001). Two-generation analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution, 55, 260–271. doi:10.1111/j.0014-3820.2001.tb01291.

    CAS  Google Scholar 

  • Sofiev, M., & Atlaskin, E. (2007). An example of application of data assimilation technique and adjoint modelling to an inverse dispersion problem based on the ETEX experiment. In C. Borrego & A. Norman (Eds.), Air pollution modelling and its application XVII (pp. 438–448). New York: Springer.

    Google Scholar 

  • Sofiev, M., Siljamo, P., Ranta, H., & Rantio-Lehtimaki, A. (2006a). Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. International Journal of Biometeorology, 50, 392–402.

    CAS  Google Scholar 

  • Sofiev, M., Siljamo, P., Valkama, I., Ilvonen, M., & Kukkonen, J. (2006b). A dispersion modelling system SILAM and its evaluation against ETEX data. Atmospheric Environment, 40, 674–685. doi:10.1016/j.atmosenv.2005.09.069.

    CAS  Google Scholar 

  • Sofiev, M., Bousquet, J., Linkosalo, T., Ranta, H., Rantio-Lehtimaki, A., Siljamo, P., Valovirta, E., & Damialis, A. (2009). Pollen, allergies and adaptation. Chapter 5. In K. Ebi, G. McGregor & I. Burton (Eds.), Biometeorology and adaptation to climate variability and change (pp. 75–107). ISBN 978-4020-8920-6, Dordrecht: Springer.

    Google Scholar 

  • Sorensen, J. H. (1998). Sensitivity of the DERMA long-range Gaussian dispersion model to meteorological input and diffusion parameters. Atmospheric Environment, 32, 4195–4206.

    CAS  Google Scholar 

  • Spieksma, F. T. M., van Noort, P., & Nikkels, H. (2000). Influence of nearby stands of Artemisia on street-level versus roof-top-level ratio’s of airborne pollen quantities. Aerobiologia, 16, 21–24.

    Google Scholar 

  • Stach, A., Smith, M., Skjøth, C. A., & Brandt, J. (2007). Examining Ambrosia pollen episodes at Poznan (Poland) using back-trajectory analysis. International Journal of Biometeorology, 51, 275–286.

    CAS  Google Scholar 

  • Stanley, R. G., & Linskens, H. F. (Eds.). (1974). Pollen: Biology – biochemistry – management. Berlin: Springer.

    Google Scholar 

  • Stewart, G. A., & Holt, P. G. (1985). Submicronic airborne allergens. The Medical Journal of Australia, 143(9), 426–427.

    CAS  Google Scholar 

  • Stohl, A., Forster, C., Frank, A., Seibert, P., & Wotawa, G. (2005). Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmospheric Chemistry and Physics, 5, 2461–2474.

    CAS  Google Scholar 

  • Stohl, A., Seibert, P., Arduini, J., Eckhardt, S., Fraser, P., Greally, B. R., Lunder, C., Maione, M., Mühle, J., O’Doherty, S., Prinn, R. G., Reimann, S., Saito, T., Schmidbauer, N., Simmonds, P. G., Vollmer, M. K., Weiss, R. F., & Yokouchi, Y. (2009). An analytical inversion method for determining, regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons. Atmospheric Chemistry and Physics, 9, 1597–1620. www.atmos-chem-phys.net/9/1597/2009/.

    CAS  Google Scholar 

  • Subba Reddi, C., Reddi, N. S., & Atluri Janaki, B. (1988). Circadian patterns of pollen release in some species of Poaceae. Review of Palaeobotany and Palynology, 54, 11–42.

    Google Scholar 

  • Tampieri, F., Mandrioli, P., & Puppi, G. L. (1977). Medium range transport of airborne pollen. Agricultural Meteorology, 18, 9–20.

    Google Scholar 

  • Taylor, D. A. (2002). Dust in the wind. Environmental Health Perspectives, 110, A80–A87.

    Google Scholar 

  • Taylor, P. E., Flagan, R. C., Valenta, R., & Glovsky, M. M. (2002). Release of allergens as respirable aerosols: A link between grass pollen and asthma. The Journal of Allergy and Clinical Immunology, 109, 51–56.

    Google Scholar 

  • Taylor, P. E., Flagan, R. C., Miguel, A. G., Valenta, R., & Glovsky, M. M. (2004). Birch pollen rupture and the release of aerosols of respirable allergens. Clinical and Experimental Allergy, 34, 1591–1596.

    CAS  Google Scholar 

  • Taylor, P. E., Card, G., House, J., Dickinson, M. H., & Flagan, R. C. (2006). High-speed pollen release in the white mulberry tree, Morus alba L. sexual plant. Reproduction, 19, 19–24.

    Google Scholar 

  • Taylor, P. E., Jacobson, K. W., House, J. M., & Glovsky, M. M. (2007). Links between pollen, atopy and the asthma epidemic. International Archives of Allergy and Immunology, 144, 162–170. doi:000103230 [pii] 10.1159/000103230 [doi].

    Google Scholar 

  • Timmons, A., O’Brien, E., Charters, Y., Dubbels, S., & Wilkinson, M. (1995). Assessing the risks of wind pollination from fields of genetically modified Brassica napus ssp. oleifera. Euphytica, 85, 417–423.

    Google Scholar 

  • Traidl-Hoffmann, C., Kasche, A., Menzel, A., Jakob, T., Thiel, M., Ring, J., & Behrendt, H. (2003). Impact of pollen on human health: More than allergen carriers? International Archives of Allergy and Immunology, 131, 1–13. doi:10.1159/000070428.

    Google Scholar 

  • Van Campo, M., & Quet, L. (1982). Pollen and red dust transport from South to North of the Mediterranean area. Comptes Rendus des Seances de l’Academie des Sciences Serie III Sciences de la Vie, 295, 61–64.

    Google Scholar 

  • Van de Water, P. K., & Levetin, E. (2001). The contribution of upwind pollen sources to the characterization of Juniperus ashei phenology. Grana, 40, 133–141.

    Google Scholar 

  • Van de Water, P. K., Keever, T., Main, C. E., & Levetin, E. (2003). An assessment of predictive forecasting of Juniperus ashei pollen movement in the Southern Great Plains, USA. International Journal of Biometeorology, 48, 74–82.

    Google Scholar 

  • Van de Water, P., Watrud, L. S., Lee, E. H., Burdick, C., & King, G. A. (2007). Long-distance GM pollen movement of creeping bentgrass using modeled wind trajectory analysis. Ecological Applications, 17(4), 1244–1256.

    Google Scholar 

  • Veriankaité, L., Siljamo, P., Sofiev, M., Sauliené, I., & Kukkonen, J. (2010). Modelling analysis of source regions of long range transported birch pollen that influences allergenic seasons in Lithuania. Aerobiologia, 26, 47–62.

    Google Scholar 

  • Vogel, H., Pauling, A., & Vogel, B. (2008). Numerical simulations of birch pollen dispersion with an operational weather forecast system. International Journal of Biometeorology, 52, 805–814.

    Google Scholar 

  • von Wahl, P.-G., & Puls, K. E. (1989). The emission of mugwort polen (Artemisia vulgaris L.) and its flight in the air. Aerobiologia, 5, 55–63.

    Google Scholar 

  • Vrtala, S., Grote, M., Duchene, M., van Ree, R., Kraft, D., Scheiner, O., & Valenta, R. (1993). Properties of tree and grass pollen allergens: Reinvestigation of the linkage between solubility and allergenicity. International Archives of Allergy and Immunology, 102, 160–169.

    CAS  Google Scholar 

  • Waisel, Y., Ganor, E., Epshtein, V., Stupp, A., & Eshel, A. (2008). Airborne pollen, spores, and dust across the East Mediterranean sea. Aerobiologia, 24, 125–131.

    Google Scholar 

  • Westbrook, J. K., & Isard, S. A. (1999). Atmospheric scales of biotic dispersal. Agricultural and Forest Meteorology, 97, 263–274.

    Google Scholar 

  • WHO. (2003). Phenology and human health: Allergic disorders. Copenhagen: WHO Regional Office for Europe. 55 pp.

    Google Scholar 

  • Wodehouse, R. P. (1935). Pollen grains. Their structure, identification and significance in science and medicine. New York: MacGraw-Hill.

    Google Scholar 

  • Wotawa, G., De Geer, L.-E., Denier, P., Kalinowski, M., Toivonen, H., D’Amours, R., Desiato, F., Issartel, J.-P., Langer, M., Seibert, P., Frank, A., Sloan, C., & Yamazawa, H. (2003). Atmospheric transport modelling in support of CTBT verification – overview and basic concepts. Atmospheric Environment, 37, 1565–1573.

    Google Scholar 

  • Wu, P. C., Tsai, J. C., Li, F. C., Lung, S. C., & Su, H. J. (2004). Increased levels of ambient fungal spores in Taiwan are associated with dust events from China. Atmospheric Environment, 38, 4879–4886.

    CAS  Google Scholar 

  • Wynn-Williams, D. D. (1991). Aerobiology and colonization in Antarctica: The BIOTAS ­programme. Grana, 30, 380–393.

    Google Scholar 

  • Yadav, S., Chauhan, M. S., & Sharma, A. (2007). Characterisation of bio-aerosols during dust storm period in N-NW India. Atmospheric Environment, 41, 6063–6073.

    CAS  Google Scholar 

  • Zhang, W. Y., Arimoto, R., & An, Z. S. (1997). Dust emission from Chinese desert sources linked to variations in atmospheric circulation. Journal of Geophysical Research, 102(23), 28041–28147.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Sofiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sofiev, M. et al. (2013). Airborne Pollen Transport. In: Sofiev, M., Bergmann, KC. (eds) Allergenic Pollen. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4881-1_5

Download citation

Publish with us

Policies and ethics