Applications of Network Bioinformatics to Cancer Angiogenesis

  • Corban G. Rivera
  • Liang-Hui Chu
  • Joel S. Bader
  • Aleksander S. Popel
Chapter

Abstract

Angiogenesis is the formation of new blood vessels from preexisting microvessels. Excessive and insufficient angiogenesis has been associated with many diseases including cancer, age-related macular degeneration, ischemic heart, brain, and skeletal muscle diseases. In this book chapter, we focus on the biological networks associated with angiogenesis in cancer. We review diverse studies on angiogenesis networks, including angiogenic signaling and angiogenic switch networks, global angiogenesis protein-protein interaction networks, crosstalk among angiogenic pathways, and drug networks. This chapter is for readers who are interested in cancer systems biology and bioinformatics, especially in angiogenesis.

Keywords

Network biology Network bioinformatics Bioinformatics Angio-genesis Angiogenesis signaling networks Protein interaction networks 

Abbreviations

PPI

Protein-protein interaction

PIN

Protein interaction network

HUVEC

Human umbilical vein endothelial cells

GO

Gene ontology

TNF

Tumor necrosis factor

CSPN

Characteristic subpathway network

VEGF

Vascular endothelial growth factor

RTK

Receptor tyrosine kinase

NF-κB

Nuclear factor kappa B

TSP1

Thrombospondin-1

ERBB3

Gene encoding for receptor tyrosine kinase

ERB

Estrogen receptor beta

HIF1-α

Hypoxia inducible factor 1

MAP Kinase

Mitogen activated protein kinase

bFGF

Basic fibroblast growth factor

SVMs

Support vector machines

MYC

Myelocytomatosis viral oncogene homolog

TNF

Tumor necrosis factor

ClustEX

Clustering techniques for automatic information extraction

TGF-β

Transforming growth factor beta

EGF

Epidermal growth factor

FGF

Fibroblast growth factor

IL-1

Interleukin-1

kDa

Kilo Dalton

References

  1. Abdollahi A, Hahnfeldt P, Maercker C, Grone HJ, Debus J, Ansorge W, Folkman J, Hlatky L, Huber PE (2004) Endostatin’s antiangiogenic signaling network. Mol Cell 13:649–663CrossRefPubMedGoogle Scholar
  2. Abdollahi A, Schwager C, Kleeff J, Esposito I, Domhan S, Peschke P, Hauser K, Hahnfeldt P, Hlatky L, Debus J et al (2007) Transcriptional network governing the angiogenic switch in human pancreatic cancer. Proc Natl Acad Sci USA 104:12890–12895CrossRefPubMedPubMedCentralGoogle Scholar
  3. Almog N, Ma L, Raychowdhury R, Schwager C, Erber R, Short S, Hlatky L, Vajkoczy P, Huber PE, Folkman J et al (2009) Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Res 69:836–844CrossRefPubMedGoogle Scholar
  4. Arrell DK, Terzic A (2009) Network systems biology for drug discovery. Clin Pharmacol Ther 88:120–125CrossRefGoogle Scholar
  5. Boran AD, Iyengar R (2010) Systems pharmacology. Mt Sinai J Med 77:333–344CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen Y, Wei T, Yan L, Lawrence F, Qian HR, Burkholde TP, Starling JJ, Yingling JM, Shou J (2008) Developing and applying a gene functional association network for anti-angiogenic kinase inhibitor activity assessment in an angiogenesis co-culture model. BMC Genomics 9:264CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chu LH, Rivera CG, Popel AS, Bader JS (2012) Constructing the Angiome – a global angiogenesis protein interaction network. Physiol. GenomicsGoogle Scholar
  9. Echtermeyer F, Streit M, Wilcox-Adelman S, Saoncella S, Denhez F, Detmar M, Goetinck P (2001) Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J Clin Invest 107:R9–R14CrossRefPubMedPubMedCentralGoogle Scholar
  10. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186CrossRefPubMedGoogle Scholar
  11. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286CrossRefPubMedGoogle Scholar
  12. Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science 296:750–752CrossRefPubMedGoogle Scholar
  13. Gaur P, Bose D, Samuel S, Ellis LM (2009) Targeting tumor angiogenesis. Semin Oncol 36:S12–S19CrossRefPubMedGoogle Scholar
  14. Gu J, Chen Y, Li S, Li Y (2010) Identification of responsive gene modules by network-based gene clustering and extending: application to inflammation and angiogenesis. BMC Syst Biol 4:47CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefPubMedGoogle Scholar
  16. Hase T, Tanaka H, Suzuki Y, Nakagawa S, Kitano H (2009) Structure of protein interaction networks and their implications on drug design. PLoS Comput Biol 5:e1000550CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hibino S, Shibuya M, Hoffman MP, Engbring JA, Hossain R, Mochizuki M, Kudoh S, Nomizu M, Kleinman HK (2005) Laminin alpha5 chain metastasis- and angiogenesis-inhibiting peptide blocks fibroblast growth factor 2 activity by binding to the heparan sulfate chains of CD44. Cancer Res 65:10494–10501CrossRefPubMedGoogle Scholar
  18. Huang Y, Li S (2010) Detection of characteristic sub pathway network for angiogenesis based on the comprehensive pathway network. BMC Bioinformatics 11:S32CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kar G, Gursoy A, Keskin O (2009) Human cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol 5:e1000601CrossRefPubMedPubMedCentralGoogle Scholar
  20. Karagiannis ED, Popel AS (2008) A systematic methodology for proteome-wide identification of peptides inhibiting the proliferation and migration of endothelial cells. Proc Natl Acad Sci USA 105:13775–13780CrossRefPubMedPubMedCentralGoogle Scholar
  21. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V et al (2011) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39:D1035–D1041CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lanckriet GR, De Bie T, Cristianini N, Jordan MI, Noble WS (2004) A statistical framework for genomic data fusion. Bioinformatics 20:2626–2635CrossRefPubMedGoogle Scholar
  23. London CA, Sekhon HS, Arora V, Stein DA, Iversen PL, Dev GR (2003) A novel antisense inhibitor of MMP-9 attenuates angiogenesis, human prostate cancer cell invasion and tumorigenicity. Cancer Gene Ther 10:823–832CrossRefPubMedGoogle Scholar
  24. Maeda T, Desouky J, Friedl A (2006) Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis. Oncogene 25:1408–1412CrossRefPubMedGoogle Scholar
  25. Murali TM, Wu CJ, Kasif S (2006) The art of gene function prediction. Nat Biotechnol 24:1474–1475; author reply 1475–1476CrossRefPubMedGoogle Scholar
  26. Noguer O, Reina M (2009) Is syndecan-2 a key angiogenic element? Scientific World Journal 9:729–732CrossRefPubMedGoogle Scholar
  27. Pena-Castillo L, Tasan M, Myer CL, Lee H, Joshi T, Zhang C, Guan Y, Leone M, Pagnani A, Kim WK et al (2008) A critical assessment of Mus musculus gene function prediction using integrated genomic evidence. Genome Biol 9(Suppl 1):S2CrossRefPubMedPubMedCentralGoogle Scholar
  28. Rivera CG, Bader JS, Popel AS (2011a) Angiogenesis-associated crosstalk between collagens, CXC chemokines, and thrombospondin domain-containing proteins. Ann Biomed Eng 39:2213–2222CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rivera CG, Mellberg S, Claesson-Welsh L, Bader JS, Popel AS (2011b) Analysis of VEGF-a regulated gene expression in endothelial cells to identify genes linked to angiogenesis. PLoS One 6:e24887CrossRefPubMedPubMedCentralGoogle Scholar
  30. Rosca EV, Koskimaki JE, Rivera CG, Pandey NB, Tamiz AP, Popel AS (2011) Anti-angiogenic peptides for cancer therapeutics. Curr Pharm Biotechnol 12:1101–1116CrossRefPubMedPubMedCentralGoogle Scholar
  31. Troyanskaya OG, Dolinski K, Owen AB, Altman RB, Botstein D (2003) A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc Natl Acad Sci USA 100:8348–8353CrossRefPubMedPubMedCentralGoogle Scholar
  32. Zhou X, Kao MC, Wong WH (2002) Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci USA 99:12783–12788CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Corban G. Rivera
    • 1
    • 2
  • Liang-Hui Chu
    • 1
  • Joel S. Bader
    • 1
    • 2
  • Aleksander S. Popel
    • 1
  1. 1.Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.High-Throughput Biology Center, Johns Hopkins School of MedicineJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations