Abstract
Cancer is produced by perturbations affecting several genes and pathways. Environmental stimuli trigger uncontrolled cell growth and invasion into other tissues. Understanding cancer progression requires a profound knowledge of the pathways involved in the communication between proteins and genes at a systems level. Consequently, protein-protein interaction networks play an important role in delineating cancer related pathways. Our understanding of cancer has evolved towards the co-operation of groups of genes that constitute pathways. In this chapter, we describe the characteristics of genes involved in cancer and the relationships between them in the context of the protein-protein interaction network. We also explain several methods to predict novel candidates that are potentially involved in cancer and its progression using topological information encoded in the protein-protein interaction network. Towards developing effective network-based therapeutics, we give details of identifying dysregulation patterns in cancer using protein-protein interaction networks with an emphasis on the underlying mechanisms of progression in metastatic breast cancer.
Keywords
- Protein-protein interaction
- Network biology
- Network medicine
- Active subnetwork
- Metastasis
- Metastatic breast cancer
- Guilt-by-association
This is a preview of subscription content, access via your institution.
Buying options




Abbreviations
- PPI:
-
Protein-protein interaction
- GO:
-
Gene Ontology
- OMIM:
-
Online Mendelian Inheritance in Man
- ROC:
-
Receiver-operating characteristic
- AUC:
-
Area under (ROC) curve
- GRP:
-
Glucose regulated proteins
References
Aerts S, Lambrechts D, Maity S et al (2006) Gene prioritization through genomic data fusion. Nat Biotechnol 24:537–544
Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK (2006) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8:1195–1203
Alexeyenko A, Sonnhammer EL (2009) Global networks of functional coupling in eukaryotes from comprehensive data integration. Genome Res 19:1107–1116
Alfarano C, Andrade CE, Anthony K et al (2005) The biomolecular interaction network database and related tools 2005 update. Nucleic Acids Res 33:D418–D424
Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461
Amberger J, Bocchini CA, Scott AF, Hamosh A (2009) McKusick’s Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res 37:D793–D796
Apweiler R, Bairoch A, Wu CH et al (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32:D115–D119
Aragues R, Sander C, Oliva B (2008) Predicting cancer involvement of genes from heterogeneous data. BMC Bioinformatics 9:172
Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29
Bairoch A, Apweiler R, Wu CH et al (2005) The universal protein resource (UniProt). Nucleic Acids Res 33:D154–D159
Bandyopadhyay S, Kelley R, Krogan NJ, Ideker T (2008) Functional maps of protein complexes from quantitative genetic interaction data. PLoS Comput Biol 4:e1000065
Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113
Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68
Barrett T, Edgar R (2006) Gene expression omnibus: microarray data storage, submission, retrieval, and analysis. Methods Enzymol 411:352–369
Berglund L, Bjorling E, Oksvold P et al (2008) A genecentric Human Protein Atlas for expression profiles based on antibodies. Mol Cell Proteomics 7:2019–2027
Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28L:235–242
Bhalla US (2003) Understanding complex signaling networks through models and metaphors. Prog Biophys Mol Biol 81:45–65
Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283:381–387
Bonifaci N, Berenguer A, Diez J et al (2008) Biological processes, properties and molecular wiring diagrams of candidate low-penetrance breast cancer susceptibility genes. BMC Med Genomics 1:62
Buetow KH, Klausner RD, Fine H et al (2002) Cancer molecular analysis project: weaving a rich cancer research tapestry. Cancer Cell 1:315–318
Chen J, Aronow BJ, Jegga AG (2009) Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics 10:73
Chen L, Xuan J, Riggins RB et al (2011) Identifying cancer biomarkers by network-constrained support vector machines. BMC Syst Biol 5:161
Chowdhury SA, Nibbe RK, Chance MR, Koyuturk M (2011) Subnetwork state functions define dysregulated subnetworks in cancer. J Comput Biol 18:263–281
Chu LH, Chen BS (2008) Construction of a cancer-perturbed protein-protein interaction network for discovery of apoptosis drug target. BMC Syst Biol 2:56
Chuang HY, Lee E, Liu YT et al (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3:140
Chuang HY, Hofree M, Ideker T (2010) A decade of systems biology. Annu Rev Cell Dev Biol 26:721–744
Collins FS, Barker AD (2007) Mapping the cancer genome. Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies. Sci Am 296:50–57
Comen E, Norton L, Massague J (2011) Clinical implications of cancer self-seeding. Nat Rev Clin Oncol 8:369–377
Croft D, O’Kelly G, Wu G et al (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39:D691–D697
Csermely P, Agoston V, Pongor S (2005) The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 26:178–182
Dezso Z, Nikolsky Y, Nikolskaya T et al (2009) Identifying disease-specific genes based on their topological significance in protein networks. BMC Syst Biol 3:36
Dickson D (1999) Wellcome funds cancer database. Nature 401:729
Dreze M, Monachello D, Lurin C et al (2010) High-quality binary interactome mapping. Methods Enzymol 470:281–315
Dutkowski J, Ideker T (2011) Protein networks as logic functions in development and cancer. PLoS Comput Biol 7:e1002180
Efroni S, Schaefer CF, Buetow KH (2007) Identification of key processes underlying cancer phenotypes using biologic pathway analysis. PLoS One 2:e425
Ergun A, Lawrence CA, Kohanski MA et al (2007) A network biology approach to prostate cancer. Mol Syst Biol 3:82
Ferlay J, Parkin DM, Steliarova-Foucher E (2010) Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 46:765–781
Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458
Fliri AF, Loging WT, Volkmann RA (2010) Cause-effect relationships in medicine: a protein network perspective. Trends Pharmacol Sci 31:547–555
Fry DC, Vassilev LT (2005) Targeting protein-protein interactions for cancer therapy. J Mol Med (Berl) 83:955–963
Furney SJ, Higgins DG, Ouzounis CA, Lopez-Bigas N (2006) Structural and functional properties of genes involved in human cancer. BMC Genomics 7:3
Furney SJ, Calvo B, Larranaga P et al (2008) Prioritization of candidate cancer genes–an aid to oncogenomic studies. Nucleic Acids Res 36:e115
Futreal PA, Coin L, Marshall M et al (2004) A census of human cancer genes. Nat Rev Cancer 4:177–183
Garcia-Garcia J, Guney E, Aragues R et al (2010) Biana: a software framework for compiling biological interactions and analyzing networks. BMC Bioinformatics 11:56
Gluck S (2007) The prevention and management of distant metastases in women with breast cancer. Cancer Invest 25:6–13
Goh KI, Cusick ME, Valle D et al (2007) The human disease network. Proc Natl Acad Sci USA 104:8685–8690
Grimaldi D, Claessens YE, Mira JP, Chiche JD (2009) Beyond clinical phenotype: the biologic integratome. Crit Care Med 37:S38–S49
Guldener U, Munsterkotter M, Oesterheld M et al (2006) MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Res 34:436–441
Gundem G, Perez-Llamas C, Jene-Sanz A et al (2010) IntOGen: integration and data mining of multidimensional oncogenomic data. Nat Methods 7:92–93
Guney E, Oliva B (2011) Toward PWAS: discovering pathways associated with human disorders. BMC Bioinformatics 12:A12
Guo Z, Wang L, Li Y et al (2007) Edge-based scoring and searching method for identifying condition-responsive protein-protein interaction subnetwork. Bioinformatics 23:2121–2128
Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695
Hamosh A, Scott AF, Amberger JS et al (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33:D514–D517
Han K, Park B, Kim H et al (2004) HPID: the Human Protein Interaction Database. Bioinformatics 20:2466–2470
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674
Harris MA, Clark J, Ireland A et al (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–D261
Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690
Hortobagyi GN (2000) Developments in chemotherapy of breast cancer. Cancer 88:3073–3079
Hudson TJ, Anderson W, Artez A et al (2010) International network of cancer genome projects. Nature 464:993–998
Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18:644–652
Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl 1):S233–S240
Jonsson PF, Bates PA (2006) Global topological features of cancer proteins in the human interactome. Bioinformatics 22:2291–2297
Joyce AR, Palsson BO (2006) The model organism as a system: integrating ‘omics’ data sets. Nat Rev Mol Cell Biol 7:198–210
Justman QA, Serber Z, Ferrell JE Jr et al (2009) Tuning the activation threshold of a kinase network by nested feedback loops. Science 324:509–512
Kaal EC, Niel CG, Vecht CJ (2005) Therapeutic management of brain metastasis. Lancet Neurol 4:289–298
Kanehisa M, Goto S, Sato Y et al (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114
Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549
Kapushesky M, Emam I, Holloway E et al (2010) Gene expression atlas at the European bioinformatics institute. Nucleic Acids Res 38:D690–D698
Kar G, Gursoy A, Keskin O (2009) Human cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol 5:e1000601
Kerrien S, Aranda B, Breuza L et al (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40:D841–D846
Keshava Prasad TS, Goel R, Kandasamy K et al (2009) Human protein reference database–2009 update. Nucleic Acids Res 37:D767–D772
Korcsmaros T, Kovacs IA, Szalay MS, Csermely P (2007) Molecular chaperones: the modular evolution of cellular networks. J Biosci 32:441–446
Lage K, Karlberg EO, Storling ZM et al (2007) A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 25:309–316
Lapointe J, Li C, Higgins JP et al (2004) Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 101:811–816
Laubenbacher R, Hower V, Jarrah A et al (2009) A systems biology view of cancer. Biochim Biophys Acta 1796:129–139
Lee E, Jung H, Radivojac P et al (2009) Analysis of AML genes in dysregulated molecular networks. BMC Bioinformatics 10((Suppl 9)):S2
Li LC, Zhao H, Shiina H et al (2003) PGDB: a curated and integrated database of genes related to the prostate. Nucleic Acids Res 31:291–293
Licata L, Briganti L, Peluso D et al (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40:D857–D861
Lim WK, Lyashenko E, Califano A (2009) Master regulators used as breast cancer metastasis classifier. Pac Symp Biocomput 2009:504–515
Lu X, Kang Y (2007) Organotropism of breast cancer metastasis. J Mammary Gland Biol Neoplasia 12:153–162
Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5:845–856
Luo J, Emanuele MJ, Li D et al (2009) A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137:835–848
Ma X, Lee H, Wang L, Sun F (2007) CGI: a new approach for prioritizing genes by combining gene expression and protein-protein interaction data. Bioinformatics 23:215–221
Ma’ayan A, Jenkins SL, Neves S et al (2005) Formation of regulatory patterns during signal propagation in a Mammalian cellular network. Science 309:1078–1083
Mani KM, Lefebvre C, Wang K et al (2008) A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Mol Syst Biol 4:169
Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274
Martin B, Aragues R, Sanz-Pamplona R et al (2008) Biological pathways contributing to organ-specific phenotype of brain metastatic cells. J Proteome Res 7:908–920
McKusick VA (2007) Mendelian inheritance in man and its online version, OMIM. Am J Hum Genet 80:588–604
Michod D, Widmann C (2007) DNA-damage sensitizers: potential new therapeutical tools to improve chemotherapy. Crit Rev Oncol Hematol 63:160–171
Milenkovic T, Memisevic V, Ganesan AK, Przul N (2010) Systems-level cancer gene identification from protein interaction network topology applied to melanogenesis-related functional genomics data. J R Soc Interface 7:423–437
Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524
Mulder NJ, Apweiler R, Attwood TK et al (2003) The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res 31:315–318
Navlakha S, Kingsford C (2010) The power of protein interaction networks for associating genes with diseases. Bioinformatics 26:1057–1063
Nguyen DX, Massague J (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8:341–352
Nibbe RK, Markowitz S, Myeroff L et al (2009) Discovery and scoring of protein interaction subnetworks discriminative of late stage human colon cancer. Mol Cell Proteomics 8:827–845
Nibbe RK, Koyuturk M, Chance MR (2010) An integrative -omics approach to identify functional subnetworks in human colorectal cancer. PLoS Comput Biol 6:e1000639
Nibbe RK, Chowdhury SA, Koyuturk M et al (2011) Protein-protein interaction networks and subnetworks in the biology of disease. Wiley Interdiscip Rev Syst Biol Med 3:357–367
Nitsch D, Goncalves JP, Ojeda F et al (2010) Candidate gene prioritization by network analysis of differential expression using machine learning approaches. BMC Bioinformatics 11:460
Ogmen U, Keskin O, Aytuna AS et al (2005) PRISM: protein interactions by structural matching. Nucleic Acids Res 33:W331–W336
Ostlund G, Lindskog M, Sonnhammer EL (2010) Network-based Identification of novel cancer genes. Mol Cell Proteomics 9:648–655
Paget S (1889) The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev 8:98–101
Palotai R, Szalay MS, Csermely P (2008) Chaperones as integrators of cellular networks: changes of cellular integrity in stress and diseases. IUBMB Life 60:10–18
Parkinson H, Sarkans U, Kolesnikov N et al (2011) ArrayExpress update–an archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucleic Acids Res 39:D1002–D1004
Peri S, Navarro JD, Kristiansen TZ et al (2004) Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res 32:D497–D501
Pujana MA, Han JD, Starita LM et al (2007) Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 39:1338–1349
Pujol A, Mosca R, Farres J, Aloy P (2010) Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci 31:115–123
Qiu YQ, Zhang S, Zhang XS, Chen L (2010) Detecting disease associated modules and prioritizing active genes based on high throughput data. BMC Bioinformatics 11:26
Quackenbush J (2006) Microarray analysis and tumor classification. N Engl J Med 354:2463–2472
Rhodes DR, Chinnaiyan AM (2005) Integrative analysis of the cancer transcriptome. Nat Genet 37(Suppl):S31–S37
Rhodes DR, Tomlin SA, Varambally S et al (2005) Probabilistic model of the human protein-protein interaction network. Nat Biotechnol 23:951–959
Rhodes DR, Kalyana-Sundaram S, Mahavisno V et al (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9:166–180
Russell RB, Aloy P (2008) Targeting and tinkering with interaction networks. Nat Chem Biol 4:666–673
Salwinski L, Miller CS, Smith AJ et al (2004) The Database of Interacting Proteins: 2004 update. Nucleic Acids Res 32:D449–D451
Sanz-Pamplona R, Aragues R, Stresing V et al (2007) Functional pathways shared by liver and lung metastases: a mitochondrial chaperone machine is up-regulated in soft-tissue breast cancer metastasis. Clin Exp Metastasis 24:673–683
Sanz-Pamplona R, Aragues R, Driouch K et al (2011) Expression of endoplasmic reticulum stress proteins is a candidate marker of brain metastasis in both ErbB-2+ and ErbB-2- primary breast tumors. Am J Pathol 179:564–579
Sawyers CL (2008) The cancer biomarker problem. Nature 452:548–552
Schaefer CF (2004) Pathway databases. Ann N Y Acad Sci 1020:77–91
Schlabach MR, Luo J, Solimini NL et al (2008) Cancer proliferation gene discovery through functional genomics. Science 319:620–624
Scholl C, Frohling S, Dunn IF et al (2009) Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137:821–834
Schwartz AS, Yu J, Gardenour KR et al (2009) Cost-effective strategies for completing the interactome. Nat Methods 6:55–61
Schwikowski B, Uetz P, Fields S (2000) A network of protein-protein interactions in yeast. Nat Biotechnol 18:1257–1261
Segal E, Friedman N, Koller D, Regev A (2004) A module map showing conditional activity of expression modules in cancer. Nat Genet 36:1090–1098
Shedden K, Taylo JM, Enkemann SA et al (2008) Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 14:822–827
Stark C, Breitkreutz BJ, Chatr-Aryamontri A et al (2011) The BioGRID Interaction Database: 2011 update. Nucleic Acids Res 39:D698–D704
Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12:895–904
Strausberg RL, Simpson AJ, Wooster R (2003) Sequence-based cancer genomics: progress, lessons and opportunities. Nat Rev Genet 4:409–418
Su AI, Wiltshire T, Batalov S et al (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101:6062–6067
Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550
Taylor IW, Linding R, Warde-Farley D et al (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27:199–204
The-Uniprot-Consortium (2011) Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res 39:D214–D219
Tomlins SA, Mehra R, Rhodes DR et al (2007) Integrative molecular concept modeling of prostate cancer progression. Nat Genet 39:41–51
Ulitsky I, Shamir R (2007) Identification of functional modules using network topology and high-throughput data. BMC Syst Biol 1:8
Ulitsky I, Shamir R (2009) Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics 25:1158–1164
Ulitsky I, Shlomi T, Kupiec M, Shamir R (2008) From E-MAPs to module maps: dissecting quantitative genetic interactions using physical interactions. Mol Syst Biol 4:209
Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292
van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009
Vanunu O, Magger O, Ruppin E et al (2010) Associating genes and protein complexes with disease via network propagation. PLoS Comput Biol 6:e1000641
Vazquez A (2009) Optimal drug combinations and minimal hitting sets. BMC Syst Biol 3:81
Venkatesan K, Rual JF, Vazquez A et al (2009) An empirical framework for binary interactome mapping. Nat Methods 6:83–90
Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human disease. Cell 144:986–998
Vogelstein B, Kinzle KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799
von Mering C, Huynen M, Jaeggi D et al (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31:258–261
Wachi S, Yoneda K, Wu R (2005) Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21:4205–4208
Waltregny D, Bellahcene A, de Leval X et al (2000) Increased expression of bone sialoprotein in bone metastases compared with visceral metastases in human breast and prostate cancers. J Bone Miner Res 15:34–843
Wang Y, Klijn JG, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679
Weigelt B, Mackay A, A’Hern R et al (2010) Breast cancer molecular profiling with single sample predictors: a retrospective analysis. Lancet Oncol 11:339–349
Weng G, Bhalla US, Iyengar R (1999) Complexity in biological signaling systems. Science 284:92–96
Wood LD, Parsons DW, Jones S et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113
Wu X, Jiang R, Zhang MQ, LI S (2008) Network-based global inference of human disease genes. Mol Syst Biol 4:189
Yang K, Bai H, Ouyang Q et al (2008) Finding multiple target optimal intervention in disease-related molecular network. Mol Syst Biol 4:228
Acknowledgments
EG is supported through FI fellowship granted by “Departament d’Educació i Universitats de la Generalitat de Catalunya i del Fons Social Europeu”. BO acknowledges grants from the Spanish Ministry of Science and Innovation (MICINN), FEDER BIO2011-22568, and PSE-0100000-2009. AS and RS acknowledge MetaBre consortium (LSHC-CT-2004-506049).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Guney, E., Sanz-Pamplona, R., Sierra, A., Oliva, B. (2012). Understanding Cancer Progression Using Protein Interaction Networks. In: Azmi, A.S. (eds) Systems Biology in Cancer Research and Drug Discovery. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4819-4_7
Download citation
DOI: https://doi.org/10.1007/978-94-007-4819-4_7
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-007-4818-7
Online ISBN: 978-94-007-4819-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)