Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs which play important regulatory roles on target messenger RNAs (mRNAs) that in turn, result into posttranslational repression. This intricate interplay between miRNAs and mRNA plays significant roles in complex diseases such as cancer. In this review we will introduce the role of several miRNAs known to be associated with different human cancers. More importantly, we will outline many existing computational algorithms that predict miRNA targets. These target prediction algorithms can potentially provide valuable data-based information for further experimental validation of meaningful miRNA-mRNA interactomes responsible for serious diseases including cancer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- miRNA:
-
MicroRNA
- mRNA:
-
Messenger RNA
- ncRNA:
-
Non coding RNA
- tRNA:
-
Translational RNA
- UTR:
-
Untranslated region
- piRNA:
-
PIWI interacting RNA
- siRNA:
-
Short interfering RNA
- PicTar:
-
Probabilistic identification of combinations of target sites
- IPA:
-
Ingenuity pathway analysis
- RISC:
-
RNA-induced silencing complex
- APC:
-
Adenomatous polyposis coli gene
- SNP:
-
Single nucleotide polymorphism
- DsRNA:
-
Double stranded RNA
- DsRBD:
-
dsRNA binding domain protein
- CBC:
-
Components of the cap binding complex
- ORF:
-
Open reading frame
- AGO:
-
Argonaut protein
References
Adams BD, Furneaux H, White BA (2007) The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-{alpha} (ER{alpha}) and represses ER{alpha} messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol 21:1132–1147
Ahnen DJ (2011) The American College of Gastroenterology Emily Couric lecture[mdash]the adenoma-carcinoma sequence revisited: has the era of genetic tailoring finally arrived[quest]. Am J Gastroenterol 106:190–198
Akao Y, Nakagawa Y, Naoe T (2006) MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol Rep 16:845–850
Alexiou P, Maragkakis M, Papadopoulos GL, Reczko M, Hatzigeorgiou AG (2009) Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics 25:3049–3055
Ameres SL, Martinez J, Schroeder R (2007) Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130:101–112
Aqeilan RI, Calin GA, Croce CM (2009) miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 17:215–220
Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297
Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233
Bartels CL, Tsongalis GJ (2009) MicroRNAs: novel biomarkers for human cancer. Clin Chem 55:623–631
Berkhout B, Jeang K-T (2007) RISCy business: microRNAs, pathogenesis, and viruses. J Biol Chem 282:26641–26645
Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36:D149–D153
Blaxter M (2010) Revealing the dark matter of the genome. Science 330:1758–1759
Blenkiron C, Goldstein LD, Thorne NP et al (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8:R214
Brabletz S, Brabletz T (2010) The ZEB/miR-200 feedback loop–a motor of cellular plasticity in development and cancer? EMBO Rep 11:670–677
Bracken CP, Gregory PA, Kolesnikoff N et al (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68:7846–7854
Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85
Brown JR, Sanseau P (2005) A computational view of microRNAs and their targets. Drug Discov Today 10:595–601
Brueckner B, Stresemann C, Kuner R et al (2007) The human let-7a-3 locus contains an epigenetically regulated MicroRNA gene with oncogenic function. Cancer Res 67:1419–1423
Cagle PT, Allen TC, Dacic S et al (2011) Revolution in lung cancer: new challenges for the surgical pathologist. Arch Pathol Lab Med 135:110–116
Calin GA, Croce CM (2006) MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66:7390–7394
Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci 99:15524–15529
Catto JWF, Alcaraz A, Bjartell AS et al (2011) MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol 59:671–681
Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033
Chendrimada TP, Finn KJ, Ji X et al (2007) MicroRNA silencing through RISC recruitment of eIF6. Nature 447:823–828
Chin LJ, Ratner E, Leng S et al (2008) A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases Non-small cell lung cancer risk. Cancer Res 68:8535–8540
Chou Y-T, Lin H-H, Lien Y-C et al (2010) EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF. Cancer Res 70:8822–8831
Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci 102:13944–13949
Cuellar TL, McManus MT (2005) MicroRNAs and endocrine biology. J Endocrinol 187:327–332
Cummins JM, Velculescu VE (2006) Implications of micro-RNA profiling for cancer diagnosis. Oncogene 25:6220–6227
Dacic S (2011) Molecular diagnostics of lung carcinomas. Arch Pathol Lab Med 135:622–629
Datta S (2001) Exploring relationships in gene expressions: a partial least squares approach. Gene Expr 9:249–255
Datta S, Le-Rademacher J, Datta S (2007) Predicting patient survival from microarray data by accelerated failure time modeling using partial least squares and LASSO. Biometrics 63:259–271
Davis-Dusenbery BN, Hata A (2010) Mechanisms of control of microRNA biogenesis. J Biochem 148:381–392
Deng N, Puetter A, Zhang K et al (2011) Isoform-level microRNA-155 target prediction using RNA-seq. Nucleic Acids Res 39(9):e61
Diederichs S, Haber DA (2006) Sequence variations of microRNAs in human cancer: alterations in predicted secondary structure do not affect processing. Cancer Res 66:6097–6104
ENCODE (2007) ENCODE, project and consortium: Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature 447:799–816
Friedman RC, Farh KK-H, Burge CB, Bartel D (2008) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res: gr.082701.082108
Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105
Fukuda T, Yamagata K, Fujiyama S et al (2007) DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 9:604–611
Gao W, Shen H, Liu L, Xu J, Xu J, Shu Y (2011a) MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol 137:557–566
Gao W, Liu L, Lu X, Shu Y (2011b) Circulating microRNAs: possible prediction biomarkers for personalized therapy of non-small-cell lung carcinoma. Clin Lung Cancer 12:14–17
Gaur A, Jewell DA, Liang Y et al (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67:2456–2468
Giannakakis A, Coukos G, Hatzigeorgiou A, Sandaltzopoulos R, Zhang L (2007) miRNA genetic alterations in human cancers. Expert Opin Biol Ther 7:1375–1386
Gong X, Wu R, Wang H et al (2011) Evaluating the consistency of differential expression of microRNA detected in human cancers. Mol Cancer Ther 10:752–760
Gramantieri L, Ferracin M, Fornari F et al (2007) Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 67:6092–6099
Gregory RI, K-p Y, Amuthan G et al (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240
Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158
Gruber JJ, Zatechka DS, Sabin LR et al (2009) Ars2 links the nuclear cap-binding complex to RNA interference and cell proliferation. Cell 138:328–339
Gusev Y, Schmittgen TD, Lerner M, Postier R, Brackett D (2007) Computational analysis of biological functions and pathways collectively targeted by co-expressed microRNAs in cancer. BMC Bioinform 8 Suppl 7: S16
Hammell M, Long D, Zhang L et al (2008) mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts. Nat Methods 5:813–819
Hammond SM (2005) MicroRNAs as oncogenes. Curr Opin Genet Dev 16:4–9
Hayashita Y, Osada H, Tatematsu Y et al (2005) A polycistronic MicroRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632
Heegaard NH, Schetter AJ, Welsh JA, Yoneda M, Bowman ED, Harris CC (2011) Circulating microRNA expression profiles in early stage non-small cell lung cancer. Int J Cancer 130(6):1378–1386
Heikkinen L, Kolehmainen M, Wong G (2011) Prediction of microRNA targets in Caenorhabditis elegans using a self-organizing map. Bioinformatics 27(9):1247–1254
Hinske L, Galante P, Kuo W, Ohno-Machado L (2010) A potential role for intragenic miRNAs on their hosts’ interactome. BMC Genomics 11:533
Hock J, Meister G (2008) The Argonaute protein family. Genome Biol 9:210
Hossain A, Kuo MT, Saunders GF (2006) Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol 26:8191–8201
Huang JC, Babak T, Corson TW et al (2007) Using expression profiling data to identify human microRNA targets. Nat Methods 4:1045–1049
Hurteau GJ, Carlson JA, Spivack SD, Brock GJ (2007) Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res 67:7972–7976
Iorio MV, Ferracin M, Liu C-G et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070
Izumiya M, Okamoto K, Tsuchiya N, Nakagama H (2010) Functional screening using a microRNA virus library and microarrays: a new high-throughput assay to identify tumor-suppressive microRNAs. Carcinogenesis 31:1354–1359
Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin: caac.20073
Jiang J, Lee EJ, Gusev Y, Schmittgen TD (2005) Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res 33:5394–5403
John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2:e363
Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 MicroRNA family. Cell 120:635–647
Johnson CD, Esquela-Kerscher A, Stefani G et al (2007) The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67:7713–7722
Kanemitsu K, Kawasaki K, Nakamura M et al (2007) MSI is frequently recognized among gastric cancer patients with a family history of cancer. Hepatogastroenterology 54:2410–2414
Kapranov P, Cheng J, Dike S et al (2007) RNA maps reveal New RNA classes and a possible function for pervasive transcription. Science 316:1484–1488
Kapranov P, St Laurent G, Raz T et al (2010) The majority of total nuclear-encoded non-ribosomal RNA in a human cell is ‘dark matter’ un-annotated RNA. BMC Biol 8:149
Katahira J, Yoneda Y (2011) Nucleocytoplasmic transport of microRNAs and related small RNAs. Traffic 12(11):1468–1474
Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284
Kim SK, Nam JW, Rhee JK, Lee WJ, Zhang BT (2006) miTarget: microRNA target gene prediction using a support vector machine. BMC Bioinformatics 7:411
Kohonen T (1995/1997/2001) Self-organizing maps, 3rd edn, Springer series in information sciences, vol. 30. Springer, Berlin/Heidelberg/New York
Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157
Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500
Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854
Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798
Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20
Li X, Gill R, Cooper NG, Yoo JK, Datta S (2011) Modeling microRNA-mRNA interactions using PLS regression in human colon cancer. BMC Med Genomics 4:44
Lin PY, Yu SL, Yang PC (2010) MicroRNA in lung cancer. Br J Cancer 103:1144–1148
Liu X, Sempere LF, Guo Y et al (2011) Involvement of microRNAs in lung cancer biology and therapy. Transl Res 157:200–208
Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y (2007) Potent effect of target structure on microRNA function. Nat Struct Mol Biol 14:287–294
Lowery AJ, Miller N, McNeill RE, Kerin MJ (2008) MicroRNAs as prognostic indicators and therapeutic targets: potential effect on breast cancer management. Clin Cancer Res 14:360–365
Lu Z, Liu M, Stribinskis V et al (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27:4373–4379
Lujambio A, Ropero S, Ballestar E et al (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67:1424–1429
Mattie MD, Benz CC, Bowers J et al (2006) Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 5:24
Maziere P, Enright AJ (2007) Prediction of microRNA targets. Drug Discov Today 12:452–458
Megraw M, Sethupathy P, Corda B, Hatzigeorgiou AG (2007) miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res 35:D149–D155
Melo SA, Moutinho C, Ropero S et al (2010) A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 18:303–315
Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658
Miranda KC, Huynh T, Tay Y et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217
Muckstein U, Tafer H, Hackermuller J, Bernhart SH, Stadler PF, Hofacker IL (2006) Thermodynamics of RNA-RNA binding. Bioinformatics 22:1177–1182
Nagayama K, Kohno T, Sato M, Arai Y, Minna JD, Yokota J (2007) Homozygous deletion scanning of the lung cancer genome at a 100-kb resolution. Genes Chromosomes Cancer 46:1000–1010
Nagel R, le Sage C, Diosdado B et al (2008) Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 68:5795–5802
Nguyen DV, Rocke DM (2002) Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 18:39–50
Nicoloso MS, Sun H, Spizzo R et al (2010) Single-nucleotide polymorphisms inside MicroRNA target sites influence tumor susceptibility. Cancer Res 70:2789–2798
O’Day E, Lal A (2010) MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res 12(2):201
Osada H, Takahashi T (2007) MicroRNAs in biological processes and carcinogenesis. Carcinogenesis 28:2–12
Pasquinelli AE, Hunter S, Bracht J (2005) MicroRNAs: a developing story. Curr Opin Genet Dev 15:200–205
Peng X, Li Y, Walters KA et al (2009) Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers. BMC Genomics 10:373
Pickering BF, Yu D, Van Dyke MW (2011) Nucleolin interacts with the microprocessor complex to affect microRNAs 15a and 16 biogenesis. J Biol Chem 286(51):44095–44103
Pillai RS, Bhattacharyya SN, Filipowicz W (2007) Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 17:118–126
Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TLJ, Visakorpi T (2007) MicroRNA expression profiling in prostate cancer. Cancer Res 67:6130–6135
Purohit PV, Rocke DM (2003) Discriminant models for high-throughput proteomics mass spectrometer data. Proteomics 3:1699–1703
Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10:42–46
Ragan C, Zuker M, Ragan MA (2011) Quantitative prediction of miRNA-mRNA interaction based on equilibrium concentrations. PLoS Comput Biol 7:e1001090
Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906
Robins H, Li Y, Padgett RW (2005) Incorporating structure to predict microRNA targets. Proc Natl Acad Sci USA 102:4006–4009
Ruby JG, Jan C, Player C et al (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127:1193–1207
Sachdeva M, Zhu S, Wu F et al (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci 106:3207–3212
Saini HK, Griffiths-Jones S, Enright AJ (2007) Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci 104:17719–17724
Saito M, Schetter AJ, Mollerup S et al (2011) The association of microRNA expression with prognosis and progression in early-stage, non–small cell lung adenocarcinoma: a retrospective analysis of three cohorts. Clin Cancer Res 17:1875–1882
Sarver AL, Li L, Subramanian S (2010) MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res 70:9570–9580
Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91:827–887
Schepeler T, Reinert JT, Ostenfeld MS et al (2008) Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res 68:6416–6424
Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC (2006) Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66:1277–1281
Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS, Benz CC (2007) Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem 282:1479–1486
Seike M, Goto A, Okano T et al (2009) MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci 106:12085–12090
Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63
Sempere LF, Christensen M, Silahtaroglu A et al (2007) Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 67:11612–11620
Sen GL, Blau HM (2006) A brief history of RNAi: the silence of the genes. FASEB J 20:1293–1299
Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) miR-21-mediated tumor growth. Oncogene 26:2799–2803
Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011. CA Cancer J Clin 61:212–236
Suzuki HI, Miyazono K (2011) Emerging complexity of microRNA generation cascades. J Biochem 149:15–25
Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009) Modulation of microRNA processing by p53. Nature 460:529–533
Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs: regulators of disease. J Pathol 220:126–139
Takamizawa J, Konishi H, Yanagisawa K et al (2004) Reduced expression of the let-7 MicroRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756
Tavazoie SF, Alarcon C, Oskarsson T et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152
Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM (2006) Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20:2202–2207
Tsang WP, Ng EKO, Ng SSM et al (2010) Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 31:350–358
Tsuchiya N, Izumiya M, Ogata-Kawata H et al (2011) Tumor suppressor miR-22 determines p53-dependent cellular fate through post-transcriptional regulation of p21. Cancer Res 71:4628–4639
Tuteja R, Tuteja N (1998) Nucleolin: a multifunctional major nucleolar phosphoprotein. Crit Rev Biochem Mol Biol 33:407–436
Vasudevan S, Tong Y, Steitz J (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934
Verghese ET, Hanby AM, Speirs V, Hughes TA (2008) Small is beautiful: microRNAs and breast cancer-where are we now? J Pathol 215:214–221
Volinia S, Calin GA, Liu C-G et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci 103:2257–2261
Wang X, El Naqa IM (2008) Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 24:325–332
Wang Y, Juranek S, Li H, Sheng G, Tuschl T, Patel DJ (2008) Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456:921–926
Wang R, Wang ZX, Yang JS, Pan X, De W, Chen LB (2011) MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14). Oncogene 30:2644–2658
Wery M, Kwapisz M, Morillon A (2011) Noncoding RNAs in gene regulation. Wiley Interdiscip Rev Syst Biol Med 3(6):728–738
Wickramasinghe N, Manavalan T, Dougherty S, Riggs K, Li Y, Klinge C (2009) Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res 37:2584–2595
Wu M, Jolicoeur N, Li Z et al (2008) Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis 29:1710–1716
Wuchty S, Fontana W, Hofacker IL, Schuster P (1999) Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49:145–165
Yanaihara N, Caplen N, Bowman E et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198
Yousef M, Jung S, Kossenkov AV, Showe LC, Showe MK (2007) Naive Bayes for microRNA target predictions–machine learning for microRNA targets. Bioinformatics 23:2987–2992
Zhang L, Huang J, Yang N et al (2006) microRNAs exhibit high frequency genomic alterations in human cancer. PNAS 103:9136–9141
Zhou Y, Yau C, Gray JW et al (2007) Enhanced NF kappa B and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer. BMC Cancer 7:59
Acknowledgements
We would like to thank Dr. Timothy O’Toole for assistance with manuscript preparation. This work was supported by NIH-CA133844 (S. Datta), NIH-R01 CA138410 (C. M. Klinge) and the center grant NIH-P20RR16481.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Li, X., Klinge, C.M., Datta, S. (2012). Novel and Alternative Bioinformatics Approaches to Understand miRNA-mRNA Interactome in Cancer Research. In: Azmi, A.S. (eds) Systems Biology in Cancer Research and Drug Discovery. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4819-4_11
Download citation
DOI: https://doi.org/10.1007/978-94-007-4819-4_11
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-007-4818-7
Online ISBN: 978-94-007-4819-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)