Advertisement

Novel Ultrasound Imaging Applications

  • Francesco Simonetti
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 166)

Abstract

Routine applications of ultrasound imaging combine array technology and beamforming (BF) algorithms for image formation. Although BF is very robust, it discards a significant proportion of the information encoded in ultrasonic signals. Therefore, BF can reconstruct some of the geometrical features of an object but with limited resolution due to the diffraction limit. Inverse scattering theory offers an alternative approach to BF imaging that has the potential to break the diffraction limit and extract quantitative information about the mechanical properties of the object. High-resolution, quantitative imaging is central to modern diagnostic technology to achieve cost-effective detection through high sensitivity and limited false positive rate. This chapter lays out a framework encompassing theoretical and experimental results, and in which inverse scattering and modern array technology can be combined together to achieve super-resolution, quantitative imaging.

Keywords

Point Spread Function Inverse Scattering Born Approximation Scattered Field Diffraction Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author is grateful to the UK Engineering and Physical Sciences Research Council (EPSRC) for supporting this work under grant EP/F00947X/1.

References

  1. 1.
    Abbott, J.G., Thurstone, F.L.: Acoustic speckle: Theory and experimental analysis. Ultrason. Imag. 1, 303–324 (1979) CrossRefGoogle Scholar
  2. 2.
    Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists. Academic Press, London (2001) Google Scholar
  3. 3.
    Baggeroer, A.B.: Sonar arrays and array processing. In: Thompson, D.O., Chimenti, D.E. (eds.) Rev. Prog. Quant. NDE, vol. 760, pp. 3–24 (2005) Google Scholar
  4. 4.
    Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, Cambridge (1999) Google Scholar
  5. 5.
    Bucci, O.M., Insernia, T.: Electromagnetic inverse scattering: Retrievable information and measurement strategies. Radio Sci. 32, 2123–2137 (1997) CrossRefGoogle Scholar
  6. 6.
    Chaumet, P., Belkebir, K., Sentenac, A.: Experimental microwave imaging of three-dimensional targets with different inversion procedures. J. Appl. Phys. 106, 034901 (2009) CrossRefGoogle Scholar
  7. 7.
    Chen, F.C., Chew, W.C.: Experimental verification of super resolution in nonlinear inverse scattering. Appl. Phys. Lett. 72, 3080–3082 (1998) CrossRefGoogle Scholar
  8. 8.
    Colton, D., Coyle, J., Monk, P.: Recent developments in inverse acoustic scattering theory. SIAM Rev. 42, 369–414 (2000) CrossRefGoogle Scholar
  9. 9.
    Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93. Springer, Berlin (1992) Google Scholar
  10. 10.
    Colton, D., Kress, R.: Eigenvalues of the far field operator for the Helmholtz equation in an absorbing medium. SIAM J. Appl. Math. 55, 1724–1735 Google Scholar
  11. 11.
    Courjon, D.: Near-field Microscopy and Near-field Optics. Imperial College Press, London (2003) CrossRefGoogle Scholar
  12. 12.
    Cox, I.J., Sheppard, C.J.R.: Information capacity and resolution in an optical system. J. Opt. Soc. Am. A 3, 1152–1158 (1986) CrossRefGoogle Scholar
  13. 13.
    Drinkwater, B., Wilcox, P.: Ultrasonic arrays for non-destructive evaluation: A review. NDT E Int. 39, 525–541 (2006) CrossRefGoogle Scholar
  14. 14.
    Driscoll, J.R., Healy, D.M.: Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15, 202–250 (1994) CrossRefGoogle Scholar
  15. 15.
    Duric, N., Poulo, L.P., et al.: Detection of breast cancer with ultrasound tomography: first results with the computed ultrasound risk evaluation (CURE) prototype. Med. Phys. 34, 773–785 (2007) CrossRefGoogle Scholar
  16. 16.
    Goodman, J.W.: Introduction to Fourier Optics. McGraw-Hill, New York (1996) Google Scholar
  17. 17.
    Huang, S., Ingber, D.E.: Cell Tension, Matrix Mechanics and Cancer Development. Cancer Cell 8, 175–176 (2005) CrossRefGoogle Scholar
  18. 18.
    Jackson, W.D.: Classical Electrodynamics. Wiley, New York (1999) Google Scholar
  19. 19.
    Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Reconstruction. IEEE Press, New York (1998) Google Scholar
  20. 20.
    Kirsch, A.: Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Probl. 14, 1489–1512 (1998) CrossRefGoogle Scholar
  21. 21.
    Kirsch, A.: The MUSIC algorithm and the factorization method in inverse scattering theory for inhomogeneous media. Inverse Probl. 18, 1025–1040 (2002) CrossRefGoogle Scholar
  22. 22.
    Kolb, T.M., Lichy, J., Newhouse, J.H.: Comparison of the performance of screening mammography, physical examination, and breast us and evaluation of factors that influence them: an analysis of 27,825 patient evaluation. Radiology 225, 165–175 (2002) CrossRefGoogle Scholar
  23. 23.
    Lavarello, R.J., Oelze, M.L.: Density imaging using inverse scattering. J. Acoust. Soc. Am. 125, 793–802 (2009) CrossRefGoogle Scholar
  24. 24.
    Lin, F.C., Fiddy, A.: The Born-Rytov controversy: I. Comparing analytical and approximate expressions for the one-dimensional deterministic case. J. Opt. Soc. Am. A 9, 1102–1110 (1992) CrossRefGoogle Scholar
  25. 25.
    Lukosz, W.: Optical systems with resolving powers exceeding the classical limit. J. Opt. Soc. Am. 56, 932–941 (1966) CrossRefGoogle Scholar
  26. 26.
    Marengo, E.A., Gruber, F.K., Simonetti, F.: Time-reversal music imaging of extended targets. IEEE Trans. Image Process. 16, 1967–1984 (2007) CrossRefGoogle Scholar
  27. 27.
    Morse, P.M., Ingard, K.U.: Theoretical Acoustics. McGraw-Hill, New York (1968) Google Scholar
  28. 28.
    Pratt, G.R.: Seismic waveform inversion in the frequency domain, part 1: Theory and verification in a physical scale model. Geophysics 64, 888–901 (1999) CrossRefGoogle Scholar
  29. 29.
    Sentenac, A., Guerin, C.A., Chaumet, P.C., et al.: Influence of multiple scattering on the resolution of an imaging system: A Cramer-Rao analysis. Opt. Express 15, 1340–1347 (2007) CrossRefGoogle Scholar
  30. 30.
    Shemer, A., Mendlovic, D., Zalevsky, Z., et al.: Superresolving optical system with time multiplexing and computer encoding. Appl. Opt. 38, 7245–7251 (1999) CrossRefGoogle Scholar
  31. 31.
    Simonetti, F.: Localization of point-like scatterers in solids with subwavelength resolution. Appl. Phys. Lett. 89, 094105 (2006) CrossRefGoogle Scholar
  32. 32.
    Simonetti, F.: Multiple scattering: The key to unravel the subwavelength world from the far-field pattern of a scattered wave. Phys. Rev. E 73, 036619 (2006) CrossRefGoogle Scholar
  33. 33.
    Simonetti, F., Huang, L.: From beamforming to diffraction tomography. J. Appl. Phys. 103, 103110 (2008) CrossRefGoogle Scholar
  34. 34.
    Simonetti, F., Huang, L., Duric, N.: On the sampling of the far-field operator with a circular ring array. J. Appl. Phys. 101, 083103 (2007) CrossRefGoogle Scholar
  35. 35.
    Simonetti, F., Huang, L., Duric, N., Rama, O.: Imaging beyond the Born approximation: An experimental investigation with an ultrasonic ring array. Phys. Rev. E 76, 036601 (2007) CrossRefGoogle Scholar
  36. 36.
    Simonetti, F.: Illustration of the role of multiple scattering in subwavelength imaging from far-field measurements. J. Opt. Soc. Am. A 25, 292–303 (2008) CrossRefGoogle Scholar
  37. 37.
    Simonetti, F., Huang, L., Duric, N.: A multiscale approach to diffraction tomography of complex three-dimensional objects. Appl. Phys. Lett. 95, 067904 (2009) CrossRefGoogle Scholar
  38. 38.
    Simonetti, F., Huang, L., Duric, N., Littrup, P.: Diffraction and coherence in breast ultrasound tomography: A study with a toroidal array. Med. Phys. 36, 2955–2965 (2009) CrossRefGoogle Scholar
  39. 39.
    Stratton, J.A.: Electromagnetic Theory. McGraw-Hill, New York (1941) Google Scholar
  40. 40.
    Waag, R.C., Fedewa, R.J.: A ring transducer system for medical ultrasound research. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1707–1718 (2006) CrossRefGoogle Scholar
  41. 41.
    Waterman, P.C.: New formulation of acoustic scattering. J. Acoust. Soc. Am. 45, 1417–1429 (1968) CrossRefGoogle Scholar
  42. 42.
    Wells, P.N.T.: Ultrasonic imaging of the human body. Rep. Prog. Phys. 62, 671–722 (1999) CrossRefGoogle Scholar
  43. 43.
    Zweig, M.H., Campbell, G.: Receiver-operating characteristics (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 39, 561–577 (1993) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.College of Engineering and Applied Science, School of Aerospace SystemsUniversity of CincinnatiCincinnatiUSA

Personalised recommendations