Ex Vivo Expansion of Stem and Progenitor Cells Using Thrombopoietin

Chapter
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 8)

Abstract

Although most researchers predicted that thrombopoietin (TPO) would be a lineage specific regulator, with physiologic effects limited to megakaryocytes and platelets, it became clear that it is also an important growth factor of hematopoietic stem cells. This property of TPO qualified it for ex vivo expansion procedures aimed to amplify committed progenitors and stem cells, or, at least, to maintain the latter. During more than one decade of experimental work and preclinical development, the first efficient expansion procedures appeared enabling an acceleration of hematopoietic reconstitution after transplantation. All successful procedures were based on a cytokine cocktail containing TPO among other cytokines. The action of TPO on stem cells seems to be related to its hypoxia-mimicking properties.

Keywords

Stem Cell Stem Cell Factor Platelet Production Cord Blood Cell Cytokine Cocktail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Boiron JM, Dazey B, Cailliot C, Launay B, Attal M, Mazurier F, McNiece IK, Ivanovic Z, Caraux J, Marit G, Reiffers J (2006) Large-scale expansion and transplantation of CD34(+) hematopoietic cells: in vitro and in vivo confirmation of neutropenia abrogation related to the expansion process without impairment of the long-term engraftment capacity. Transfusion 46:1934–1942PubMedCrossRefGoogle Scholar
  2. de Lima M, McMannis J, Gee A, Komanduri K, Couriel D, Andersson BS, Hosing C, Khouri I, Jones R, Champlin R, Karandish S, Sadeghi T, Peled T, Grynspan F, Daniely Y, Nagler A, Shpall EJ (2008) Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplant 41:771–778PubMedCrossRefGoogle Scholar
  3. Dello Sbarba P, Cipolleschi MG, Olivotto M (1987) Hemopoietic progenitor cells are sensitive to the cytostatic effect of pyruvate. Exp Hematol 15:137–142PubMedGoogle Scholar
  4. Duchez P, Chevaleyre J, Vlaski M, Dazey B, Bijou F, Lafarge X, Milpied N, Boiron JM, Ivanovic Z (2011) Thrombopoietin to replace megakaryocyte-derived growth factor: impact on stem and progenitor cells during ex vivo expansion of CD34+ cells mobilized in peripheral blood. Transfusion 51:313–318PubMedCrossRefGoogle Scholar
  5. Fan JL, Cai HB, Tan WS (2008) Effect of regulating intracellular ROS with antioxidants on the ex vivo expansion of cord blood CD34(+) cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 24:767–770PubMedGoogle Scholar
  6. Huang H, Cantor AB (2009) Common features of megakaryocytes and hematopoietic stem cells: what’s the connection? J Cell Biochem 107:857–864, ReviewPubMedCentralPubMedCrossRefGoogle Scholar
  7. Iida H et al (2012) Hypoxia induces CD133 expression in human lung cancer cells by up-regulation of OCT3/4 and SOX2. Int J Oncol 40(1):71–79PubMedGoogle Scholar
  8. Ivanovic Z (2004) Interleukin-3 and ex vivo maintenance of hematopoietic stem cells: facts and controversies. Eur Cytokine Netw 15:6–13PubMedGoogle Scholar
  9. Ivanovic Z (2009) Hypoxia or in situ normoxia: the stem cell paradigm. J Cell Physiol 219:271–275PubMedCrossRefGoogle Scholar
  10. Ivanovic Z, Boiron JM (2009) Ex vivo expansion of hematopoietic stem cells: concept and clinical benefit. Transfus Clin Biol 16:489–500PubMedCrossRefGoogle Scholar
  11. Ivanovic Z, Bartolozzi B, Bernabei PA, Cipolleschi MG, Rovida E, Milenković P, Praloran V, Dello Sbarba P (2000) Incubation of murine bone marrow cells in hypoxia ensures the maintenance of marrow-repopulating ability together with the expansion of committed progenitors. Br J Haematol 108:424–429PubMedCrossRefGoogle Scholar
  12. Ivanovic Z, Hermitte F, Brunet de la Grange P, Dazey B, Belloc F, Lacombe F, Vezon G, Praloran V (2004) Simultaneous maintenance of human cord blood SCID-repopulating cells and expansion of committed progenitors at low O2 concentration (3%). Stem Cells 22:716–724PubMedCrossRefGoogle Scholar
  13. Ivanovic Z, Duchez P, Dazey B, Hermitte F, Lamrissi-Garcia I, Mazurier F, Praloran V, Reiffers J, Vezon G, Boiron JM (2006) A clinical-scale expansion of mobilized CD 34+ hematopoietic stem and progenitor cells by use of a new serum-free medium. Transfusion 46:126–131PubMedCrossRefGoogle Scholar
  14. Ivanovic Z, Duchez P, Chevaleyre J, Vlaski M, Lafarge X, Dazey B, Robert-Richard E, Mazurier F, Boiron JM (2011) Clinical-scale cultures of cord blood CD34+ cells to amplify committed progenitors and maintain stem cell activity. Cell Transplant 20:1453–1463PubMedCrossRefGoogle Scholar
  15. Jensen KS et al (2011) FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function. EMBO J 30:4554–4570PubMedCrossRefGoogle Scholar
  16. Kaufman DS (2010) HIF hits Wnt in the stem cell niche. Nat Cell Biol 12(10):926–927PubMedCrossRefGoogle Scholar
  17. Kaushansky K (1997) Thrombopoietin: more than a lineage-specific megakaryocyte growth factor. Stem Cells 15(Suppl 1):97–102, discussion 102–103. ReviewPubMedCrossRefGoogle Scholar
  18. Kaushansky K, Drachman JG (2002) The molecular and cellular biology of thrombopoietin: the primary regulator of platelet production. Oncogene 21:3359–3367, ReviewPubMedCrossRefGoogle Scholar
  19. Kaushansky K, Lin N, Grossmann A, Humes J, Sprugel KH, Broudy VC (1996) Thrombopoietin expands erythroid, granulocyte-macrophage, and megakaryocytic progenitor cells in normal and myelosuppressed mice. Exp Hematol 24:265–269PubMedGoogle Scholar
  20. Kobari L, Pflumio F, Giarratana M, Li X, Titeux M, Izac B, Leteurtre F, Coulombel L, Douay L (2000) In vitro and in vivo evidence for the long-term multilineage (myeloid, B, NK, and T) reconstitution capacity of ex vivo expanded human CD34(+) cord blood cells. Exp Hematol 28:1470–1480PubMedCrossRefGoogle Scholar
  21. Kobayashi M, Laver JH, Kato T, Miyazaki H, Ogawa M (1996) Thrombopoietin supports proliferation of human primitive hematopoietic cells in synergy with steel factor and/or interleukin-3. Blood 88:429–436PubMedGoogle Scholar
  22. Kögler G, Nürnberger W, Fischer J, Niehues T, Somville T, Göbel U, Wernet P (1999) Simultaneous cord blood transplantation of ex vivo expanded together with non-expanded cells for high risk leukemia. Bone Marrow Transplant 24:397–403PubMedCrossRefGoogle Scholar
  23. Kovacevic-Filipovic M, Petakov M, Hermitte F, Debeissat C, Krstić A, Jovcic G, Bugarski D, Lafarge X, Milenković P, Praloran V, Ivanovic Z (2007) Interleukin-6 (IL-6) and low O(2) concentration (1%) synergize to improve the maintenance of hematopoietic stem cells (pre-CFC). J Cell Physiol 212:68–75PubMedCrossRefGoogle Scholar
  24. Ku H, Yonemura Y, Kaushansky K, Ogawa M (1996) Thrombopoietin, the ligand for the Mpl receptor, synergizes with steel factor and other early acting cytokines in supporting proliferation of primitive hematopoietic progenitors of mice. Blood 87:4544–4551PubMedGoogle Scholar
  25. Kuter DJ, Begley CG (2002) Recombinant human thrombopoietin: basic biology and evaluation of clinical studies. Blood 100:3457–3469PubMedCrossRefGoogle Scholar
  26. Mathieu J et al (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71:4640–4652PubMedCentralPubMedCrossRefGoogle Scholar
  27. Mazumdar J et al (2010) O2 regulates stem cells through Wnt/β-catenin signalling. Nat Cell Biol 12(10):1007–1013PubMedCentralPubMedCrossRefGoogle Scholar
  28. McNiece I, Jones R, Bearman SI, Cagnoni P, Nieto Y, Franklin W, Ryder J, Steele A, Stoltz J, Russell P, McDermitt J, Hogan C, Murphy J, Shpall EJ (2000) Ex vivo expanded peripheral blood progenitor cells provide rapid neutrophil recovery after high-dose chemotherapy in patients with breast cancer. Blood 96:3001–3007PubMedGoogle Scholar
  29. Milpied N, Marit G, Dazey B, Boiron JM, Ivanovic Z, Foucaud C, Bijou F, Bouabdallah K, Schmitt A, Sauvezie M, Caillot C, Reiffers J (2009) Ex-vivo expanded peripheral blood stem cells (EVEC) compared with unmanipulated peripheral blood stem cells (PBSC) autologous transplantation for multiple myeloma: a pair match analysis. Abstract at American Society of Hematology. Blood 114:207Google Scholar
  30. Milpied N, Dazey B, Ivanovic Z, Duchez P, Vigouroux S, Tabrizi R, Pigneux A, Dilhuydy MS, Bouabdallah K, Leguay T, Sauvezie M, Lafarge X, Marit G, Boiron JM (2011) Rapid and sustained engraftment of a single allogeneic ex-vivo expanded cord blood unit (CBU) after reduced intensity conditioning (RIC) in adults. Preliminary results of a prospective trial. Abstract at American Society of Hematology. Blood 118:226Google Scholar
  31. Norol F, Drouet M, Mathieu J, Debili N, Jouault H, Grenier N, Laplanche A, Vainchenker W, Hérodin F (2000) Ex vivo expanded mobilized peripheral blood CD34+ cells accelerate haematological recovery in a baboon model of autologous transplantation. Br J Haematol 109:162–172PubMedCrossRefGoogle Scholar
  32. Panuganti S, Papoutsakis ET, Miller WM (2010) Bone marrow niche-inspired, multiphase expansion of megakaryocytic progenitors with high polyploidization potential. Cytotherapy 12:767–782PubMedCentralPubMedCrossRefGoogle Scholar
  33. Piacibello W, Sanavio F, Garetto L, Severino A, Bergandi D, Ferrario J, Fagioli F, Berger M, Aglietta M (1997) Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood. Blood 89:2644–2653PubMedGoogle Scholar
  34. Piacibello W, Sanavio F, Garetto L, Severino A, Dané A, Gammaitoni L, Aglietta M (1998) Differential growth factor requirement of primitive cord blood hematopoietic stem cell for self-renewal and amplification vs proliferation and differentiation. Leukemia 12:718–727PubMedCrossRefGoogle Scholar
  35. Piacibello W, Sanavio F, Severino A, Danè A, Gammaitoni L, Fagioli F, Perissinotto E, Cavalloni G, Kollet O, Lapidot T, Aglietta M (1999) Engraftment in nonobese diabetic severe combined immunodeficient mice of human CD34(+) cord blood cells after ex vivo expansion: evidence for the amplification and self-renewal of repopulating stem cells. Blood 93:3736–3749PubMedGoogle Scholar
  36. Prince HM, Simmons PJ, Whitty G, Wall DP, Barber L, Toner GC, Seymour JF, Richardson G, Mrongovius R, Haylock DN (2004) Improved haematopoietic recovery following transplantation with ex vivo-expanded mobilized blood cells. Br J Haematol 126:536–545PubMedCrossRefGoogle Scholar
  37. Prus E, Fibach E (2007) The effect of the copper chelator tetraethylenepentamine on reactive oxygen species generation by human hematopoietic progenitor cells. Stem Cells Dev 16:1053–1056PubMedCrossRefGoogle Scholar
  38. Quail DF et al (2011) Low oxygen levels induce the expression of the embryonic morphogen Nodal. Mol Biol Cell 22(24):4809–4821PubMedCentralPubMedCrossRefGoogle Scholar
  39. Reiffers J, Cailliot C, Dazey B, Attal M, Caraux J, Boiron JM (1999) Abrogation of post-myeloablative chemotherapy neutropenia by ex-vivo expanded autologous CD34-positive cells. Lancet 354:1092–1093PubMedCrossRefGoogle Scholar
  40. Shpall EJ, Quinones R, Giller R, Zeng C, Baron AE, Jones RB, Bearman SI, Nieto Y, Freed B, Madinger N, Hogan CJ, Slat-Vasquez V, Russell P, Blunk B, Schissel D, Hild E, Malcolm J, Ward W, McNiece IK (2002) Transplantation of ex vivo expanded cord blood. Biol Blood Marrow Transplant 8:368–376PubMedCrossRefGoogle Scholar
  41. Souyri M (1998) Mpl: from an acute myeloproliferative virus to the isolation of the long sought thrombopoietin. Semin Hematol 35:222–231, ReviewPubMedGoogle Scholar
  42. Varum S, Rodrigues AS, Moura MB, Momcilovic O, Easley CA 4th, Ramalho-Santos J, Van Houten B, Schatten G (2011) Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One 6:e20914PubMedCentralPubMedCrossRefGoogle Scholar
  43. Yoshida K, Kirito K, Yongzhen H, Ozawa K, Kaushansky K, Komatsu N (2008) Thrombopoietin (TPO) regulates HIF-1alpha levels through generation of mitochondrial reactive oxygen species. Int J Hematol 88:43–51PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Aquitaine-Limousin Branch of French Blood Institute, UMR 5164 CNRSUniversité SegalenBordeauxFrance

Personalised recommendations