Advertisement

Transformation of Vascular Endothelial Cells into Multipotent Stem-Like Cells: Role of the Activin-Like Kinase 2 Receptor

  • Damian Medici
  • Bjorn R. Olsen
Chapter
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 8)

Abstract

Vascular endothelial cells demonstrate remarkable plasticity and differentiate into other cell types during embryonic development and disease progression. This occurs through a process known as endothelial-mesenchymal transition (EndMT) in which endothelial cells acquire properties of mesenchymal stem cells, including multipotency. In this chapter, we will discuss current evidence of EndMT and its contribution to the generation of stem cell phenotype. We will describe the role of EndMT in generating fibroblasts or myofibroblasts in cardiac development, cancer and fibrosis, as well as EndMT-dependent formation of heterotopic bone. Finally, we will discuss the biochemical signaling mechanisms that control EndMT and strategies to inhibit this change in cellular phenotype.

Keywords

Vascular Endothelial Growth Factor Polylactic Acid Enhanced Green Fluorescent Protein Heterotopic Ossification Mural Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA (2009) Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 119:1438–1449PubMedCentralPubMedCrossRefGoogle Scholar
  2. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactons. Circ Res 97:512–523PubMedCrossRefGoogle Scholar
  3. Azhar M, Runyan RB, Gard C, Sanford LP, Miller ML, Andringa A, Pawlowski S, Rajan S, Doetschman T (2009) Ligand-specific function of transforming growth factor beta in epithelial-mesenchymal transition in heart development. Dev Dyn 238:431–442PubMedCentralPubMedCrossRefGoogle Scholar
  4. Battula VL, Evans KW, Hollier BG, Shi Y, Marini FC, Ayyanan A, Wang RY, Brisken C, Guerra R, Andreeff M, Mani SA (2010) Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells 28:1435–1445PubMedCentralPubMedCrossRefGoogle Scholar
  5. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657PubMedCrossRefGoogle Scholar
  6. Chang AC, Fu Y, Garside VC, Niessen K, Chang L, Fuller M, Setiadi A, Smrz J, Kyle A, Minchinton A, Marra M, Hoodless PA, Karsan A (2011) Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase. Dev Cell 21:288–300PubMedCrossRefGoogle Scholar
  7. Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22:233–241PubMedCrossRefGoogle Scholar
  8. Delot EC, Bahamonde ME, Zhao M, Lyons KM (2003) BMP signaling is required for septation of the outflow tract of the mammalian heart. Development 130:209–220PubMedCrossRefGoogle Scholar
  9. Dudley AC, Khan ZA, Shih SC, Kang SY, Zwaans BM, Bischoff J, Klagsbrun M (2008) Calcification of multipotent prostate tumor endothelium. Cancer Cell 14:201–211PubMedCentralPubMedCrossRefGoogle Scholar
  10. Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15:1010–1012PubMedCrossRefGoogle Scholar
  11. Hashimoto N, Phan SH, Imaizumi K, Matsuo M, Nakashima H, Kawabe T, Shimokata K, Hasegawa Y (2010) Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 43:161–172PubMedCrossRefGoogle Scholar
  12. Hay ED (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 233:706–720PubMedCrossRefGoogle Scholar
  13. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428PubMedCentralPubMedCrossRefGoogle Scholar
  14. Kaplan FS, Shen Q, Lounev V, Seemann P, Groppe J, Katagiri T, Pignolo RJ, Shore EM (2008) Skeletal metamorphosis in fibrodysplasia ossificans progressiva (FOP). J Bone Miner Metab 26:521–530PubMedCentralPubMedCrossRefGoogle Scholar
  15. Kokudo T, Suzuki Y, Yoshimatsu Y, Yamazaki T, Watabe T, Miyazono K (2008) Snail is required for TGFbeta-induced endothelial-mesenchymal transition of embryonic stem cell-derived endothelial cells. J Cell Sci 121:3317–3324PubMedCrossRefGoogle Scholar
  16. Li J, Qu X, Yao J, Caruana G, Ricardo SD, Yamamoto Y, Yamamoto H, Bertram JF (2010) Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes 59:2612–2624PubMedCrossRefGoogle Scholar
  17. Liebner S, Cattelino A, Gallini R, Rudini N, Iurlaro M, Piccolo S, Dejana E (2004) Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol 166:359–367PubMedCrossRefGoogle Scholar
  18. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810PubMedCrossRefGoogle Scholar
  19. Ma L, Lu MF, Schwartz RJ, Martin JF (2005) BMP2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132:5601–5611PubMedCrossRefGoogle Scholar
  20. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715PubMedCentralPubMedCrossRefGoogle Scholar
  21. Markwald RR, Fitzharris TP, Smith WN (1975) Structural analysis of endocardial cytodifferentiation. Dev Biol 42:160–180PubMedCrossRefGoogle Scholar
  22. McCulley DJ, Kang JO, Martin JF, Black BL (2008) BMP4 is required in the anterior heart field and its derivatives for endocardial cushion remodeling, outflow tract septation, and semilunar valve development. Dev Dyn 237:3200–3209PubMedCentralPubMedCrossRefGoogle Scholar
  23. Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, Olsen BR (2010) Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med 16:1400–1406PubMedCentralPubMedCrossRefGoogle Scholar
  24. Medici D, Potenta S, Kalluri R (2011) Transforming growth factor-β2 promotes Snail-mediated endothelial-mesenchymal transition through convergence of Smad-dependent and Smad-independent signalling. Biochem J 437:515–520PubMedCrossRefGoogle Scholar
  25. Mercado-Pimentel ME, Runyan RB (2007) Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs 185:146–156PubMedCrossRefGoogle Scholar
  26. Moonen JR, Krenning G, Brinker MG, Koerts JA, van Luyn MJ, Harmsen MC (2010) Endothelial progenitor cells give rise to pro-angiogenic smooth muscle-like progeny. Cardiovasc Res 86:506–515PubMedCrossRefGoogle Scholar
  27. Paruchuri S, Yang JH, Aikawa E, Melero-Martin JM, Khan Z, Loukogeorgakis S, Schoen FJ, Bischoff J (2006) Human pulmonary valve progenitor cells exhibit endothelial/mesenchymal plasticity in response to vascular endothelial growth factor-A and transforming growth factor-beta2. Circ Res 99:861–869PubMedCentralPubMedCrossRefGoogle Scholar
  28. Potenta S, Zeisberg E, Kalluri R (2008) The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer 99:1375–1379PubMedCentralPubMedCrossRefGoogle Scholar
  29. Shen Q, Little SC, Xu M, Haupt J, Ast C, Katagiri T, Mundlos S, Seemann P, Kaplan FS, Mullins MC, Shore EM (2009) Fibrodysplasia ossificans progressiva R206H ACVR1 mutation activates BMP-independent chondrogenesis and zebrafish embryo ventralization. J Clin Invest 119:3462–3472PubMedCentralPubMedGoogle Scholar
  30. Shore EM, Kaplan FS (2008) Insights from a rare genetic disorder of extra-skeletal bone formation, fibrodysplasia ossificans progressiva (FOP). Bone 43:427–433PubMedCentralPubMedCrossRefGoogle Scholar
  31. Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, Connor JM, Delai P, Glaser DL, LeMerrer M, Morhart R, Rogers JG, Smith R, Triffitt JT, Urtizberea JA, Zasloff M, Brown MA, Kaplan FS (2006) A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38:525–527PubMedCrossRefGoogle Scholar
  32. Sridurongrit S, Larsson J, Schwartz R, Ruiz-Lozano P, Kaartinen V (2008) Signaling via the Tgf-β type I receptor Alk5 in heart development. Dev Biol 322:208–218PubMedCentralPubMedCrossRefGoogle Scholar
  33. Thiery JP (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15:740–746PubMedCrossRefGoogle Scholar
  34. Wang J, Sridurongrit S, Dudas M, Thomas P, Nagy A, Schneider MD, Epstein JA, Kaartimem V (2005) Atrioventricular cushion transformation is mediated by ALK2 in the developing mouse heart. Dev Biol 286:299–310PubMedCentralPubMedCrossRefGoogle Scholar
  35. Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, Hong DW, McManus PM, Katagiri T, Sachidanandan C, Kamiya N, Fukuda T, Mishina Y, Peterson RT, Bloch KD (2008) BMP type I receptor inhibition reduces heterotopic ossification. Nat Med 14:1363–1369PubMedCentralPubMedCrossRefGoogle Scholar
  36. Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R (2007a) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13:952–961PubMedCrossRefGoogle Scholar
  37. Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R (2007b) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67:10123–10128PubMedCrossRefGoogle Scholar
  38. Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19:2282–2287PubMedCrossRefGoogle Scholar
  39. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC (2004) Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6:931–940PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of MedicineHarvard Medical SchoolBostonUSA
  2. 2.Department of Developmental BiologyHarvard School of Dental MedicineBostonUSA

Personalised recommendations