Use of Cancer/Testis Antigens in Immunotherapy: Potential Effect on Mesenchymal Stem Cells

  • Felipe Saldanha-Araujo
  • Rodrigo Haddad
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 8)


Currently, the identification of appropriate target antigens is the most critical step for the development of antigen-specific cancer immunotherapy. The cancer testis antigens (CTAs) have emerged as potential targets for cancer therapies due to their expression in a range of malignant cells with low or highly restrict expression in normal tissues. Several clinical trials involving CTAs are now being conducted with some promising results. Conversely, the identification of CTAs expression in normal stem cells, such as mesenchymal stem cells (MSCs), should be considerate in these studies. The possible side effects of CTA-based immunotherapy in MSCs cannot be ignored or overlooked, taking into account their biological properties.


Stem Cell Mesenchymal Stem Cell Adult Stem Cell Cancer Vaccine Normal Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Almeida LG, Sakabe NJ, Deoliveira AR, Silva MCC, Mundstein AS, Cohen T, Chen YT, Chua R, Gurung S, Gnjatic S, Jungbluth AA, Caballero OL, Bairoch A, Kiesler E, White SL, Simpson AJG, Old LJ, Camargo AA, Vasconcelos ATR (2009) CTdatabase: a knowledge-base of high-throughput and curated data on cancer-testis antigens. Nucleic Acids Res 37:D816–D819PubMedCentralPubMedCrossRefGoogle Scholar
  2. Boon T, Coulie PG, Van den EB (1997) Tumor antigens recognized by T cells. Immunol Today 18:267–268PubMedCrossRefGoogle Scholar
  3. Caballero OL, Chen YT (2009) Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci 100:2014–2021PubMedCrossRefGoogle Scholar
  4. Costa FF, Le BK, Brodin B (2007) Concise review: cancer/testis antigens, stem cells, and cancer. Stem Cells 25:707–711PubMedCrossRefGoogle Scholar
  5. Covas DT, Panepucci RA, Fontes AM, Silva WA Jr, Orellana MD, Freitas MC, Neder L, Santos AR, Peres LC, Jamur MC, Zago MA (2008) Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 36:642–654PubMedCrossRefGoogle Scholar
  6. Cronwright G, Le BK, Gotherstrom C, Darcy P, Ehnman M, Brodin B (2005) Cancer/testis antigen expression in human mesenchymal stem cells: down-regulation of SSX impairs cell migration and matrix metalloproteinase 2 expression. Cancer Res 65:2207–2215PubMedCrossRefGoogle Scholar
  7. Direkze NC, Alison MR (2006) Bone marrow and tumour stroma: an intimate relationship. Hematol Oncol 24:189–195PubMedCrossRefGoogle Scholar
  8. Fratta E, Coral S, Covre A, Parisi G, Colizzi F, Danielli R, Marie Nicolay HJ, Sigalotti L, Maio M (2011) The biology of cancer testis antigens: putative function, regulation and therapeutic potential. Mol Oncol 5:164–182PubMedCrossRefGoogle Scholar
  9. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247PubMedCrossRefGoogle Scholar
  10. Gjerstorff MF, Harkness L, Kassem M, Frandsen U, Nielsen O, Lutterodt M, Mollgard K, Ditzel HJ (2008) Distinct GAGE and MAGE-A expression during early human development indicate specific roles in lineage differentiation. Hum Reprod 23:2194–2201PubMedCrossRefGoogle Scholar
  11. Gotherstrom C, Ringden O, Tammik C, Zetterberg E, Westgren M, Le BK (2004) Immunologic properties of human fetal mesenchymal stem cells. Am J Obstet Gynecol 190:239–245PubMedCrossRefGoogle Scholar
  12. Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15:1010–1012PubMedCrossRefGoogle Scholar
  13. Horwitz EM, Le BK, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A (2005) Clarification of the nomenclature for MSC. The International Society for Cellular Therapy position statement. Cytotherapy 7:393–395PubMedCrossRefGoogle Scholar
  14. Jorgensen C (2009) Link between cancer stem cells and adult mesenchymal stromal cells: implications for cancer therapy. Regen Med 4:149–152PubMedCrossRefGoogle Scholar
  15. Kawada J, Wada H, Isobe M, Gnjatic S, Nishikawa H, Jungbluth AA, Okazaki N, Uenaka A, Nakamura Y, Fujiwara S, Mizuno N, Saika T, Ritter E, Yamasaki M, Miyata H, Ritter G, Murphy R, Venhaus R, Pan L, Old LJ, Doki Y, Nakayama E (2012) Heteroclitic serological response in esophageal and prostate cancer patients after NY-ESO-1 protein vaccination. Int J Cancer 130:584–592PubMedCrossRefGoogle Scholar
  16. Kim R, Emi M, Tanabe K, Arihiro K (2006) Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 66:5527–5536PubMedCrossRefGoogle Scholar
  17. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57:11–20PubMedCrossRefGoogle Scholar
  18. Lifantseva N, Koltsova A, Krylova T, Yakovleva T, Poljanskaya G, Gordeeva O (2011) Expression patterns of cancer-testis antigens in human embryonic stem cells and their cell derivatives indicate lineage tracks. Stem Cells Int 2011:795239PubMedCentralPubMedGoogle Scholar
  19. Maccario R, Podesta M, Moretta A, Cometa A, Comoli P, Montagna D, Daudt L, Ibatici A, Piaggio G, Pozzi S, Frassoni F, Locatelli F (2005) Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 90:516–525PubMedGoogle Scholar
  20. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103:4619–4621PubMedCrossRefGoogle Scholar
  21. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  22. Ren G, Zhao X, Zhang L, Zhang J, L’Huillier A, Ling W, Roberts AI, Le AD, Shi S, Shao C, Shi Y (2010) Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol 184:2321–2328PubMedCentralPubMedCrossRefGoogle Scholar
  23. Saldanha-Araujo F, Haddad R, Zanette DL, De Araujo AG, Orellana MD, Covas DT, Zago MA, Panepucci RA (2010) Cancer/Testis antigen expression on mesenchymal stem cells isolated from different tissues. Anticancer Res 30:5023–5027PubMedGoogle Scholar
  24. Saldanha-Araujo F, Ferreira FI, Palma PV, Araujo AG, Queiroz RH, Covas DT, Zago MA, Panepucci RA (2011) Mesenchymal stromal cells up-regulate CD39 and increase adenosine production to suppress activated T-lymphocytes. Stem Cell Res 7:66–74PubMedCrossRefGoogle Scholar
  25. Saldanha-Araujo F, Haddad R, de Farias KC Malmegrim, ves Souza AD, Palma PV, Araujo AG, Orellana MD, Voltarelli JC, Covas DT, Zago MA, Panepucci RA (2012) Mesenchymal stem cells promote the sustained expression of CD69 on activated T-lymphocytes: roles of canonical and non-canonical NF-kappaB signaling. J Cell Mol Med 16(6):1232–1244. doi: 10.1111/j.1582-4934.2011.01391.x PubMedCrossRefGoogle Scholar
  26. Scanlan MJ, Simpson AJ, Old LJ (2004) The cancer/testis genes: review, standardization, and commentary. Cancer Immun 4:1PubMedGoogle Scholar
  27. Shi M, Liu ZW, Wang FS (2011) Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clin Exp Immunol 164:1–8PubMedCentralPubMedGoogle Scholar
  28. Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ (2005) Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 5:615–625PubMedCrossRefGoogle Scholar
  29. Soltanian S, Matin MM (2011) Cancer stem cells and cancer therapy. Tumour Biol 32:425–440PubMedCrossRefGoogle Scholar
  30. Steinbach D, Hermann J, Viehmann S, Zintl F, Gruhn B (2002) Clinical implications of PRAME gene expression in childhood acute myeloid leukemia. Cancer Genet Cytogenet 133:118–123PubMedCrossRefGoogle Scholar
  31. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890PubMedCrossRefGoogle Scholar
  32. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389–397PubMedCrossRefGoogle Scholar
  33. Van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647PubMedCrossRefGoogle Scholar
  34. Yawata T, Nakai E, Park KC, Chihara T, Kumazawa A, Toyonaga S, Masahira T, Nakabayashi H, Kaji T, Shimizu K (2010) Enhanced expression of cancer testis antigen genes in glioma stem cells. Mol Carcinog 49:532–544PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Laboratório de Hematologia/Biologia MolecularInstituto Nacional de Células-Tronco e Terapia Celular (INCTC)Ribeirão PretoBrazil
  2. 2.Department of Pediatrics, School of MedicineUniversity of California San DiegoLa JollaUSA

Personalised recommendations