Robust Computation in Two Dimensional Neural Field

  • Yuzuru Sato
  • Shun-ichi Amari
Conference paper


In this paper, we discuss robust computation represented by collective motion of large neural dynamics. There exist stable traveling bumps and their collisions in a two dimensional neural field. By using the stable traveling bumps and their collisions, arbitrary logical operations can be constructed. The resulting computation processes in the neural field is structurally and orbitally stable and the basin measure of the dynamics of the computations is finitely positive. Thus, the computations are robust and constructive in the framework of dynamical systems theory.


Cellular Automaton Robust Computation Dynamical System Theory Symbolic Dynamic Neural Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors thank to Dr. H. Ando (Brain Science Institute, RIKEN), Dr. T. Teramoto (Chitose Institute of Science and Technology) and Prof. Y. Nishiura (Hokkaido University) for fruitful discussions. This work is supported by the visiting researchership at Laboratory for Mathematical Neuroscience at RIKEN Brain Science Institute.


  1. 1.
    McCulloch, W. S., Pitts, W.: Bulletin of Mathematical Biophysics 5 (1943) 115–133.CrossRefGoogle Scholar
  2. 2.
    Turing, A.M.: Proceedings of the London Mathematical Society 2:42 (1936) 230–265.Google Scholar
  3. 3.
    Gardner, M.: Mathematical games. Scientific American 223 (1970) 120–123; Gardner, M.: Mathematical games. Scientific American 224 (1971) 112–117.Google Scholar
  4. 4.
    Crutchfield, J. P, Mitchell, M.: PNAS, 92 (1995) 10742–10746.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Moore, C.: Phys. Rev. Lett. 64 (1990) 2354–2357.PubMedCrossRefGoogle Scholar
  6. 6.
    Siegelmann, H. T., Sontag, E.D.: Theoretical Computer Science 131: 2 (1994) 331–360.Google Scholar
  7. 7.
    Sato, Y., Limit of analog computation. (2011) in preparation.Google Scholar
  8. 8.
    Wilson, H. R., Cowan, J. D.: Kybernetik 13 (1973) 55–80; Amari, S.: Biol. Cybern. 27 (1977) 77–87.Google Scholar
  9. 9.
    Lu, Y., Sato, Y., Amari, S.: Neural Computation, 23:5 (2011) 1248–1260.Google Scholar
  10. 10.
    Turing, A. M.: Philosophical Transactions of the Royal Society of London B 237 (1952) 37–72.Google Scholar
  11. 11.
    Vanag, V. K., Epstein, I. R.: Chaos 17 (2007) 037110.PubMedCrossRefGoogle Scholar
  12. 12.
    Schenk, C. P., Or-Guil, M., Bode, M., Purwins, H. G.: Phys. Rev. Lett.78 (1997) 3781–3784.CrossRefGoogle Scholar
  13. 13.
    Pinto, D. J., Ermentrout, G. B.: SIAM J. Appl. Math. 62 (2001) 206–225.CrossRefGoogle Scholar
  14. 14.
    Nishiura, Y., Teramoto, T., Ueda, K.: Chaos 15 (2005) 047509; Nishiura, Y., Teramoto, T., Ueda, K.: Chaos, 15 (2007) 037104; Teramoto, T. Suzuki, K., Nishiura, Y.: Phys. Rev. E 80 (2009) 046208.Google Scholar
  15. 15.
    von Neumann, J.: Automata Studies, Princeton University Press, (1956) 43–98.Google Scholar
  16. 16.
    Cybenko, G., Mathematics of Control, Signals, and Systems, 2:4 (1989) 303–314.Google Scholar
  17. 17.
    Amari, S.: (1971). IEEE Proc., 59:1 (1971) 35–47; Amari, S.: IEEE Trans. Computers C-21 (1972) 1197–1206.Google Scholar
  18. 18.
    Hopfield, J.J.: PNAS 79:8 (1982) 2554–2558.Google Scholar
  19. 19.
    Amari, S.: Differential-geometrical methods in statistics. Lecture notes in statistics, Springer-Verlag, Berlin, (1985).CrossRefGoogle Scholar
  20. 20.
    Motoike, I. N., Yoshikawa, K.: Chaos, Solitons & Fractals 17 (2003) 455–461.CrossRefGoogle Scholar
  21. 21.
    Laing, C. R., Troy, W. C., Gutkin, B., Ermentrout G. B.: SIAM J. Appl. Math. 63 (2002) 62–97.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.RIES/Department of MathematicsHokkaido UniversitySapporoJapan
  2. 2.Laboratory for Mathematical NeuroscienceRIKEN Brain Science InstituteSaitamaJapan

Personalised recommendations