Multi-population Network Models of the Cortical Microcircuit

Conference paper


In this paper, we investigate a data-based multi-population extension of the balanced random network model (BRN) (Amit DJ and Brunel N, Cereb Cortex 7:237–252, 1997; van Vreeswijk C and Sompolinsky H, Science 274:1724–1726, 1996). We observe that the findings based on the mono-layered network model, especially regarding the asynchronous irregular activity state, largely generalize to the multi-population model (MPM). In addition, the increased complexity of the network structure yields cell-type specific activity features which we relate to other data-based microcircuit models as well as to experimental data. We argue that the specificity of the connectivity between cell types is crucial to achieve consistency of simulated and in vivo activity.


  1. 1.
    Amit, D.J., Brunel, N.: Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7 (1997) 237–252.PubMedCrossRefGoogle Scholar
  2. 2.
    van Vreeswijk, C., Sompolinsky, H.: Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274 (1996) 1724–1726.PubMedCrossRefGoogle Scholar
  3. 3.
    de Kock, C.P.J., Sakmann, B.: Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific. Proc. Natl. Acad. Sci. USA 106(38) (2009) 16446–16450.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Potjans, T.C., Diesmann, M.: The cell-type specific cortical microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model. Cereb. Cortex (2012). doi:10.1093/cercor/bhs358.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Binzegger, T., Douglas, R.J., Martin, K.A.C.: A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 39(24) (2004) 8441–8453.CrossRefGoogle Scholar
  6. 6.
    Thomson, A.M., West, D.C., Wang, Y., Bannister, A.: Synaptic connections and small circuits involving excitatory and inhibitory neurons in layer 2–5 of adult rat and cat neocortex: Triple intracellular recordings and biocytin labelling in vitro. Cereb. Cortex 12 (2002) 936–953.PubMedCrossRefGoogle Scholar
  7. 7.
    Brunel, N.: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8(3) (2000) 183–208.PubMedCrossRefGoogle Scholar
  8. 8.
    Izhikevich, E.M., Edelmann, G.M.: Large-scale model of mammalian thalamocortical systems. Proc. Natl. Acad. Sci. USA 105(9) (2008) 3593–3598.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Heinzle, J., Hepp, K., Martin, K. A. C.: A microcircuit model of the frontal eyefields. J. Neurosci. 27(35) (2007) 9341–9353.PubMedCrossRefGoogle Scholar
  10. 10.
    Traub, R. D., Contreras, D., Cunningham, M. O., Murray, H., et al.: Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J. Neurophysiol. 93(4) (2005) 2194–2232.PubMedCrossRefGoogle Scholar
  11. 11.
    Hill, S., Tononi, G.: Modeling sleep and wakefulness in the thalamocortical system. J. Neurophysiol. 93(3) (2005) 1671–1698.PubMedCrossRefGoogle Scholar
  12. 12.
    Haeusler, S., Maass, W.: A statistical analysis of information-processing properties of lamina-specific cortical microcircuit models. Cereb. Cortex 17(1) (2007) 149–162.PubMedCrossRefGoogle Scholar
  13. 13.
    Rasch, M.J., Schuch, K., Logothetis, N.K., Maass, W.: Statistical comparison of spike responses to natural stimuli in monkey area V1 with simulated responses of a detailed laminar network model for a patch of V1. J. Neurophysiol. 105 (2011) 757–778.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Izhikevich, E.: Simple model of spiking neurons. IEEE Transactions on neural networks. 14(6) (2003) 1569–1572.PubMedCrossRefGoogle Scholar
  15. 15.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond) 117 (1952) 500–544.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of Neuroscience and Medicine (INM-6), Computational and Systems NeuroscienceResearch Center JuelichJuelichGermany
  2. 2.Brain and Neural Systems TeamRIKEN Computational Science Research ProgramSaitamaJapan
  3. 3.RIKEN Brain Science InstituteSaitamaJapan
  4. 4.Medical FacultyRWTH Aachen UniversityAachenGermany

Personalised recommendations