Advertisement

Verification of Virtual Prototypes of Mining Machines for Technical Criterion

  • Jarosław Tokarczyk
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 170)

Abstract

Methods for verification of virtual prototypes of powered roof support and falling object protective structure (FOPS) for operator for technical criterion were presented in the paper. In the case of powered roof support resistance strain gauge measurements and geometrical measurements were used. Method of building of computational models and their further modifications for the purpose of comparison of results was presented. Potential reasons of differences between results of stand tests and results of virtual tests were showed. Virtual prototype of FOPS protective structure was verified with use of reverse engineering method (RE).

Keywords

Computational methods Experimental test Finite element method Reverse Engineering Stand test Virtual prototyping 

References

  1. 1.
    Quey R, Dawson PR, Barbe F (2011) Large-scale 3D random polycrystals for the finite element method:Generation, meshing and remeshing. Comput Methods Appl Mech Eng 200:1729–1745MATHCrossRefGoogle Scholar
  2. 2.
    Tokarczyk J (2011) methods for verification of virtual prototypes of mining machines for strength criterion, Lecture Notes in Engineering and Computer Science. In: Proceedings of The World Congress on Engineering and Computer Science WCECS 2011, 19–21 October, 2011, San Francisco, USA, pp 1106–1112Google Scholar
  3. 3.
    Winkler T, Tokarczyk J (2010) Multi-criteria assessment of virtual prototypes of mining machines. In: Proceedings: WCECS 2010, World Congress on Engineering and Computer Science, vol 2, San Francisco, USA, 20–22 October, 2010 pp. 1149–1153Google Scholar
  4. 4.
    Scientific and business news and events from the Polish and the world of mining www.teberia.pl
  5. 5.
    PN-EN 1804-1 + A1 (2011) Machines for underground mines. Safety requirements for hydraulic powered roof supports. Support units and general requirements. Polish Standard. (in Polish)Google Scholar
  6. 6.
    Ober G (2001) Wpływ luzów w prototypowych sekcjach obudów zmechanizowanych na tor końca stropnicy. Maszyny Górnicze nr 85/2001, pp. 50–54. (in Polish)Google Scholar
  7. 7.
    PN-EN 3449 (2009) Earth-moving machinery—Falling-object protective structures—Laboratory tests and performance requirements. Polish Standard. (in Polish)Google Scholar
  8. 8.
    PN-92/G-59001 Samojezdne maszyny górnicze. Konstrukcje chroniące operatora przed obwałami skał. Wymagania i badania. Polish Standard. (in Polish)Google Scholar
  9. 9.
    Barszcz Z (2006) Ocena bezpieczeństwa dużych pojazdów do przewozu osób w zakresie wytrzymałości ich konstrukcji nośnej. Konferencja: Spotkanie użytkowników oprogramowania MSC. Mszczonów (in Polish)Google Scholar
  10. 10.
    Dytran MSC 2008r1: Theory manual. MSC.Software CorporationGoogle Scholar
  11. 11.
    Bojara S, Całus Ł, Tokarczyk J (2003) Modelowanie wybranych zjawisk dynamicznych na przykładzie struktur ochronnych maszyn samojezdnych. Materiały na konferencję KOMTECH: Nowoczesne, niezawodne i bezpieczne systemy mechaniczne w świetle wymagań Unii Europejskiej. Szczyrk (in Polish)Google Scholar
  12. 12.
    PN-EN ISO 3164 (2009) Earth-moving machinery—Laboratory evaluations of protective structures—Specifications for deflection-limiting volume. Polish Standard. (in Polish)Google Scholar
  13. 13.
    Winkler T, Tokarczyk J, Bojara S (2008) Use of reverse engineering method in verification of virtual prototypes. Computer assisted mechanics and engineering sciences 1:53–65Google Scholar
  14. 14.
    Patran® (2010) Finite element modeling. MSC.Software CorporationGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of Mining Technology KOMAGGliwicePoland

Personalised recommendations