Approach to SPS Trajectory Optimization

  • Giovanni Vulpetti
Chapter
Part of the Space Technology Library book series (SPTL, volume 30)

Abstract

Classical tools for studying advanced missions via solar-photon sailing. Classical calculus of variations, Pontryagin principle, and Non-Linear Programming provide very good tools for optimizing solar-photon sailcraft trajectories with respect to some index of performance. In addition, many robust procedures there exist since many years in the major numerical libraries. In this chapter, one starts from the established Pontryagin principle, and arrives to Non-Linear Programming. This process will be driven by some key properties of the solar-photon sailing dynamical system, and by the basic guideline of keeping the time history of the sail attitude control as less difficult as possible. As far as one may envisage nowadays, this is one of the key points for getting a viable solar-photon sailing, especially regarding large-sail sailcraft. Two advanced mission concepts are built, numerically developed, and widely discussed via detailed tables and figures.

Keywords

Motion Reversal Solar Sailing Lightness Vector Mission Concept Terminal Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abbott, A. S., McIntyre, J. E. (1968), Dynamic Programming: Vol. X. Guidance, Flight Mechanics and Trajectory Optimization. NASA CR-1009. Google Scholar
  2. 2.
    Bazaraa, M. S., Sherali, H. D., Shetty, C. M. (2006), Nonlinear Programming, Theory and Algorithms (3rd edn.). New York: Wiley. ISBN-10: 0-471-48600-0, ISBN-13: 978-0-471-48600-8. CrossRefMATHGoogle Scholar
  3. 3.
    Belbruno, E. A. (1987), Lunar capture orbits, a method for constructing Earth–Moon trajectories and the lunar GAS mission. In Proceedings of AIAA/DGLR/JSASS Inter. Propl. Conf. AIAA paper No. 87-1054. Google Scholar
  4. 4.
    Belbruno, E. A., Miller, J. (1993), Sun-perturbed Earth-to-Moon transfers with ballistic capture. Journal of Guidance, Control, and Dynamics, 16, 770–775. CrossRefGoogle Scholar
  5. 5.
    Belbruno, E. A., Gidea, M., Topputto, F. (2010), Weak stability boundary and invariant manifolds. SIAM Journal on Applied Dynamical Systems, 9, 1061–1089. CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bell, D. J., Jacobson, D. H. (1975), Singular Optimal Control Problems. London: Academic Press. ISBN 0-12-085060-5. MATHGoogle Scholar
  7. 7.
    Bertsekas, D. P. (1996), Constrained Optimization and Lagrange Multiplier Methods. New York: Athena Scientific. ISBN 1-886529-04-3. Google Scholar
  8. 8.
    Bertsekas, D. P. (2004), Nonlinear Programming (2nd edn.). New York: Athena Scientific. ISBN 1-886529-00-0. Google Scholar
  9. 9.
    Bertsekas, D. P. (2007), Dynamic Programming and Optimal Control. New York: Athena Scientific. ISBN 1-886529-08-6 (Vols. I and II, 3rd edn., Two-Volume Set). Google Scholar
  10. 10.
    Bertsekas, D. P. (2011), Approximate Dynamic Programming, update June 2011. http://web.mit.edu/dimitrib/www/dpchapter.pdf.
  11. 11.
    Bryson, H. (1969), Applied Optimal Control: Optimization, Estimation, and Control. Waltham: Blaisdell. Google Scholar
  12. 12.
    Ceccaroni, M. (2008), The weak stability boundary. Mathematics Thesis, Faculty of Mathematical, Physical and Natural Sciences, Roma-3, Rome, Italy. Google Scholar
  13. 13.
    Chachuat, B. (2009), Optimal Control, Lectures 25-27: Maximum Principles. McMaster University, Hamilton, ON, Canada. Google Scholar
  14. 14.
    Dachwald, B. (2004), Solar sail performance requirements for missions to the outer solar system and beyond. In 55th IAC 2004, Vancouver, Canada. Paper IAC-04-S.P.11. Google Scholar
  15. 15.
    Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (Eds.) (2010), Recent Advances in Optimization and Its Applications in Engineering. Berlin: Springer, ISBN 978-3-642-12597-3, e-ISBN 978-3-642-12598-0. Google Scholar
  16. 16.
    Denn, M. M. (1969), Optimization by Variational Methods. New York: McGraw-Hill. Library of Congress catalog card number 73-75167 16395. Google Scholar
  17. 17.
    Dreyfus, S. E. (1967), Dynamic Programming and the Calculus of Variations. New York: Academic Press. Google Scholar
  18. 18.
    Edge, E. R., Powers, W. F. (1976), Shuttle ascent trajectory optimization with function space quasi-Newton techniques. AIAA Journal, 14, 1369–1379. CrossRefMATHGoogle Scholar
  19. 19.
    Edge, E. R., Powers, W. F. (1976), Function-space quasi-Newton algorithms for optimal control problems with bounded controls and singular arcs. Journal of Optimization Theory and Applications, 20, 455–479. CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Flaherty, J. E., O’Malley, R. E. Jr. (1977), On the computation of singular controls. IEEE Transactions on Automatic Control, AC-22, 640–648. CrossRefMathSciNetGoogle Scholar
  21. 21.
    Fujitsu Scientific Subroutine Library II (2001), Minimization of the Sum of Squares of Functions. Fujitsu Ltd. Google Scholar
  22. 22.
    Grive, I., Nash, S. G., Sofer, A. (2009), Linear and Nonlinear Optimization (2nd edn.). Philadelphia: SIAM. ISBN 978-0-898716-61-0. CrossRefGoogle Scholar
  23. 23.
    Hull, D. G. (2011), Optimal Control Theory for Applications. Berlin: Springer. ISBN 978-1-4419-2299-1. Google Scholar
  24. 24.
    IMSL Fortran Numerical Library (2010), User’s Guide Math Library, version 7.0. Visual Numerics, Inc. Google Scholar
  25. 25.
    Jacobson, D. H., Gershwin, S. B., Lele, M. M. (1970), Computation of optimal singular controls. IEEE Transactions on Automatic Control, AC-15, 67–73. CrossRefMathSciNetGoogle Scholar
  26. 26.
    Jenkins, C. H. M. (2006), AIAA Progress in Astronautics and Aeronautics: Vol. 212. Recent Advances in Gossamer Spacecraft. Berlin: Springer. ISBN 1-56347-777-7. CrossRefGoogle Scholar
  27. 27.
    JAXA (2010), IKAROS Project. http://www.jspec.jaxa.jp/e/activity/ikaros.html.
  28. 28.
    Johnson, L., Young, R. M., Montgomery, E. E. IV (2007), Status of solar sail propulsion: moving toward an interstellar probe. AIP Conference Proceedings, 886, 207–214. CrossRefGoogle Scholar
  29. 29.
    Johnson, L., Whorton, M., Heaton, A., Pinson, R., Laue, G., Adams, C. (2011), NanoSail-D: a solar sail demonstration mission. Acta Astronautica, 68(5–6), 571–575. CrossRefGoogle Scholar
  30. 30.
    Kelley, C. T. (1999), Iterative Methods for Optimization. Philadelphia: SIAM (electronic version). CrossRefMATHGoogle Scholar
  31. 31.
    Koblik, V. V., Polyakova, E. N., Sokolov, L. L., Shmirov, A. S. (1996), Controlled solar sailing transfer flights into near-sun orbits under restriction on sail temperature. Cosmic Research, 34, 572–578. Google Scholar
  32. 32.
    Laue, G. (2012), Data-sheets on polyimides. ManTech International Corporation. http://www.mantechmaterials.com.
  33. 33.
    Levenberg, K. (1944), A method for the solution of certain nonlinear problems in least squares. Quarterly of Applied Mathematics, 2, 164–168. MATHMathSciNetGoogle Scholar
  34. 34.
    Locatelli, A. (2001), Optimal Control: An Introduction. Basel: Birkhäuser. ISBN 3-7643-6408-4. CrossRefGoogle Scholar
  35. 35.
    Luenberger, D. G., Ye, Y. (2010), Linear and Nonlinear Programming (3rd edn.). Berlin: Springer. ISBN 978-1-4419-4504-4, e-ISBN 978-0-387-74503-9. Google Scholar
  36. 36.
    Luus, R. (1992), On the application of iterative dynamic programming to singular optimal control problems. IEEE Transactions on Automatic Control, 37, 1802–1806. CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Maccone, C. (2009), Deep Space Flight and Communications—Exploiting the Sun as a Gravitational Lens. Berlin: Praxis-Springer. ISBN 978-3-540-72942-6. CrossRefGoogle Scholar
  38. 38.
    Maccone, C. (2010), Realistic targets at 1000 AU for interstellar precursor missions. Acta Astronautica, 67, 526–538. CrossRefGoogle Scholar
  39. 39.
    Maccone, C. (2011), Interstellar radio links enhanced by exploiting the Sun as a gravitational lens. Acta Astronautica, 68, 76–84. CrossRefGoogle Scholar
  40. 40.
    Madsen, K., Nielsen, H. B., Tingleff, O. (2004), Methods for Non-Linear Least Squares Problems. Informatics and Technical Modeling (2nd edn.). Technical University of Denmark. Google Scholar
  41. 41.
    Mangad, M., Schwartz, M. D. (1968), The Calculus of Variations and Modern Applications: Vol. IV. Guidance, Flight Mechanics and Trajectory Optimization. NASA CR-1003. Google Scholar
  42. 42.
    Marquardt, D. W. (1963), An algorithm for least squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11, 431–441. CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Matloff, G. L., Vulpetti, G., Bangs, C., Haggerty, R. (2002), The Interstellar Probe (ISP): Pre-Perihelion Trajectories and Application of Holography. NASA/CR-2002-211730. Google Scholar
  44. 44.
    Maurer, H. (1976), Numerical solution of singular control problems using multiple shooting techniques. Journal of Optimization Theory and Applications, 18, 235–257. CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    McInnes, C. R. (2004), Solar Sailing: Technology, Dynamics and Mission Applications (2nd edn.). Berlin: Springer-Praxis. ISBN 3540210628, ISBN 978-3540210627. Google Scholar
  46. 46.
    McIntyre, J. E. (1968), The Pontryagin Maximum Principle: Vol. VII. Guidance, Flight Mechanics and Trajectory Optimization. NASA CR-1006. Google Scholar
  47. 47.
    Mengali, G., Quarta, A., Dachwald, B. (2007), Refined solar sail force model with mission application. Journal of Guidance, Control, and Dynamics, 30(2), 512–520. CrossRefGoogle Scholar
  48. 48.
    Mengali, G., Quarta, A. A., Romagnoli, D., Circi, C. (2010), H 2-Reversal trajectory: a new mission application for high-performance solar sails. Advances in Space Research doi: 10.1016/j.asr.2010.11.037. Google Scholar
  49. 49.
    Moré, J. J. (1978), The Levenberg-Marquardt algorithm: implementation and theory. In G. A. Watson (Ed.), Lecture Notes in Mathematics: Vol. 630. Numerical Analysis (pp. 105–116). Berlin: Springer. CrossRefGoogle Scholar
  50. 50.
    Moré, J. J., Garbow, B. S., Hillstrom, K. E. (1980), User guide for MINPACK-1. Argonne National Laboratory Report ANL-80-74. Google Scholar
  51. 51.
    Moré, J. J., Sorensen, D. C. (1983), Computing a trust-region step. SIAM Journal on Scientific and Statistical Computing, 4, 553–572. CrossRefMATHGoogle Scholar
  52. 52.
    Morrison, D. D. (1960), Methods for nonlinear least squares problems and convergence proofs. In JPL Seminar Proceedings. Google Scholar
  53. 53.
    NASA HelioWeb, Heliocentric Trajectories for Selected Spacecraft, Planets, and Comets. http://cohoweb.gsfc.nasa.gov/helios/.
  54. 54.
    Osborne, M. R. (1976), Nonlinear least squares—the Levenberg algorithm revisited. Journal of the Australian Mathematical Society, 19(Series B), 343–357. CrossRefMATHMathSciNetGoogle Scholar
  55. 55.
    Poncy, J., Baig, J. F., Feresin, F., Martinot, V. (2011), A preliminary assessment of an orbiter in the Haumean system: how quickly can a planetary orbiter reach such a distant target? Acta Astronautica, 68(5–6), 622–628. CrossRefGoogle Scholar
  56. 56.
    Ponssard, C., Graichen, K., Petit, N., Laurent-Varin, J. (2009), Ascent optimization for a heavy space launcher. In Proc. of the European Control Conference, Budapest, 23–26 August 2009. ISBN 978-963-311-369-1. Google Scholar
  57. 57.
    Pontryagin, L. S., et al. (1961), The Mathematical Theory of Optimal Processes (Vol. 4), translation of a Russian book, reprinted by Gordon and Breach Science (1986). ISBN 2-88124-077-1. Google Scholar
  58. 58.
    Powers, W. F. (1980), On the order of singular control problems. Journal of Optimization Theory and Applications, 32(4). Google Scholar
  59. 59.
    Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. (1992), Numerical Recipes in Fortran (2nd edn.). Cambridge: Cambridge University Press. ISBN 0-521-43064-X. MATHGoogle Scholar
  60. 60.
    Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. (2007), Numerical Recipes: The Art of Scientific Computing (3rd edn.). Cambridge: Cambridge University Press. ISBN-10: 0521880688. Google Scholar
  61. 61.
    Ross, I. M. (2009), A Primer on Pontryagin’s Principle in Optimal Control. Collegiate Publishers. ISBN 978-0-9843571-0-9. Google Scholar
  62. 62.
    Roy, A. E. (2005), Orbital Motion (4th edn.). Bristol: Institute of Physics Publishing. ISBN 0-7503-10154. Google Scholar
  63. 63.
    Ruszczyǹski, A. P. (2006), Nonlinear Optimization. Princeton: Princeton University Press. ISBN 978-0-691-11915-1, ISBN 0-691-11915-5. Google Scholar
  64. 64.
    Sauer, C. G. Jr. (1999), Solar Sail Trajectories for Solar-Polar and Interstellar Probe Missions. AAS 99-336, pp. 1–16. Google Scholar
  65. 65.
    Scagione, S., Vulpetti, G. (1999), The aurora project: removal of plastic substrate to obtain an all-metal solar sail. Acta Astronautica, 44(2–4), 147–150. CrossRefGoogle Scholar
  66. 66.
    Shakhverdyan, A. S., Shakhverdyan, S. V. (2004), Theory of singular optimal controls with applications to space flight mechanics. Cosmic Research, 42(3), 289–299. Translated from Kosmicheskie Issledovaniya, 42(3), 302–312. CrossRefGoogle Scholar
  67. 67.
    Sewell, G. (2005), The Numerical Solution of Ordinary and Partial Differential Equations (2nd edn., pp. 345). New York: Whiley InterScience. ISBN 978-0-471-73580-9. CrossRefMATHGoogle Scholar
  68. 68.
    Stengel, R. F. (1994), Optimal Control and Estimation. New York: Dover. ISBN 0-486-68200-5. MATHGoogle Scholar
  69. 69.
    Tanaka, K., Soma, E., Yokota, R., Shimazaki, K., Tsuda, Y., Kawaguchi, J., IKAROS demonstration team (2010), Develpment of thin film solar array for small solar power demonstrator IKAROS. In 61st International Astronautical Congress. IAC-10.C3.4.3. Google Scholar
  70. 70.
    Tsuda, Y., Mori, O., Sawada, H., Yamamoto, T., Saiki, T., Endo, T., Kawaguchi, J. (2011). Flight status of IKAROS deep space solar sail demonstrator. Acta Astronautica, 69(9–10), 833–840. CrossRefGoogle Scholar
  71. 71.
    Topputto, F. (2007), Low-thrust non-Keplerian orbits: analysis, design, and control. Ph.D. Thesis, Polytechnic of Milan, Dept. of Aerospace Engineering. Google Scholar
  72. 72.
    Vapnyarskii, I. B. (2001), Optimal singular regime. SpringerLink http://eom.springer.de/o/o068480.htm.
  73. 73.
    Wokes, S., Palmer, P., Roberts, M. (2008), Classification of two dimensional fixed sun angle solar sail trajectories. Journal of Guidance, Control, and Dynamics, 31, 1249 (2008). CrossRefGoogle Scholar
  74. 74.
    Vetterling, W. T., Teukolsky, S. A., Press, W. H., Flannery, B. P. (1994), Numerical Recipes Example Book (Fortran) (2nd edn.). Cambridge: Cambridge University Press. ISBN 0-521-43721-0. Google Scholar
  75. 75.
    Vulpetti, G. (1992), Missions to the heliopause and beyond by staged propulsion spacecraft, In The 1st World Space Congress, Washington, DC, 28 August–5 September 1992. Paper IAA-92-0240 at IAF Congress-43. Google Scholar
  76. 76.
    Volker, M. (1996), Singular optimal control—the state of the art. University of Kaiserslautern, Kaiserslautern, Germany. ftp://www.mathematik.uni-kl.de/pub/Math/Papers/AGTM-reports/report_169.ps.gz.
  77. 14.
    Vulpetti, G., Scaglione, S. (1999), The Aurora project: estimation of the optical scail parameters. Acta Astronautica, 44(2–4), 123–132. CrossRefGoogle Scholar
  78. 78.
    Vulpetti, G. (2000), Sailcraft-based mission to the solar gravitational lens. In STAIF-2000, Albuquerque, NM, 30 January–3 February 2000. Google Scholar
  79. 79.
    Vulpetti, G., Johnson, L., Matloff, G. L. (2008), Solar Sails, A Novel Approach to Interplanetary Travel. New York: Springer/Copernicus Books/Praxis. ISBN 978-0-387-34404-1, doi: 10.1007/978-0-387-68500-7. Google Scholar
  80. 80.
    Vulpetti, G. (2011), Reaching extra-solar-system targets via large post-perihelion lightness-jumping sailcraft. Acta Astronautica, 68(5–6). doi: 10.1016/j.actaastro.2010.02.025.
  81. 81.
    Yagasaki, K. (2004), Sun-perturbed earth-to-moon transfers with low energy and moderate flight time. Celestial Mechanics & Dynamical Astronomy, 90(3–4), 197–212. doi: 10.1007/s10569-004-0406-8. CrossRefMATHMathSciNetGoogle Scholar
  82. 82.
    Yuan, Y. X., Yuan, Y. Y. X., Yuan, Y. X. (1998), Advances in Nonlinear Programming. Dordrecht: Kluwer Academic, ISBN 0792350537, ISBN 9780792350538. CrossRefMATHGoogle Scholar
  83. 83.
    Vulpetti, G., Santoli, S., Mocci, G. (2008), Preliminary investigation on carbon nanotube membranes for photon solar sails. Journal of the British Interplanetary Society, 61(8), 2849. Google Scholar
  84. 84.
    Zeng, X., Baoyin, H., Li, J., Gong, S. (2011), New applications of the H-reversal trajectory using solar sails. In Cornell University Library. arXiv:1103.1470v1 [astro-ph.SR].
  85. 85.
    Zeng, X., Li, J., Baoyin, H., Gong, S. (2011), Trajectory optimization and applications using high performance solar sails. Theoretical and Applied Mechanics, 1, 033001. doi: 10.1063/2.1103301. CrossRefGoogle Scholar
  86. 86.
    Zeng, X., Alfriend, K. T., Li, J. (2012), Optimal solar sail trajectory analysis for interstellar missions. AAS 12-234. Google Scholar
  87. 87.
    Zhang, M., Fang, S., Zakhidov, A. A., Lee, S. B., Aliev, A. E., Williams, C. D., Atkinson, K. R., Baughman, R. H. (2005), Strong, transparent, multifunctional, carbon nanotube sheets. Science, 309, 1215–1219. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Giovanni Vulpetti
    • 1
  1. 1.International Academy of Astronautics—Paris, FranceRomeItaly

Personalised recommendations