Solar Sails in Interplanetary Environment

  • Giovanni Vulpetti
Part of the Space Technology Library book series (SPTL, volume 30)


This chapter deals with some aspects of the influence of the solar-wind particles and the ultraviolet/X-soft radiation to photon sail materials. The related sections are preparatory to Chap.  9, where a formal model to be inserted into the trajectory equations is set up. The current chapter consists of three main sections: the first one is devoted to the solar sail immersed in the solar wind, the second one regards the effect of the UV-XUV light onto the sail reflective film, and the third one considers the interaction of solar-wind protons and Helium ions on a sail moving with respect to the wind. As one can see in these sections, there are some simultaneous processes that stem from the particle impact on the solar sail, but ultimately one aims at regarding sail trajectory through the alteration of the optical properties of the sail surface. In addition to references and the author’s personal investigation, plasma data information obtained from NASA’s OMNIWeb interface is utilized again.


Solar Wind Debye Length Photoelectric Effect Solar Sail Current Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ashcroft, N. W., Mermin, N. D. (1976), Solid State Physics. New York: Harcourt College Publishers. ISBN 0-03-083993-9. Google Scholar
  2. 2.
    Balogh, A., Lanzerotti, L. J., Suess, S. T. (2008), The Heliosphere Through the Solar Activity Cycle. Berlin: Springer-Praxis. ISBN 978-3-540-74301-9. CrossRefGoogle Scholar
  3. 3.
    Behrisch, R., Eckstein, W. (2007), Sputtering by Particle Bombardment. Berlin: Springer. ISBN 987-3-540-44500-5. Google Scholar
  4. 4.
    Bellan, P. M. (2008), Fundamentals of Plasma Physics. Cambridge: Cambridge University Press. ISBN 978-0-521-52800-9. Google Scholar
  5. 5.
    Besse, A. L., Rubin, A. G. (1980), A simple analysis of spacecraft charging involving blocked photo-electron currents. Journal of Geophysical Research, 85(A5), 2324–2328. CrossRefGoogle Scholar
  6. 6.
    Callister, W. D. (2007), Materials Science and Engineering—An Introduction. New York: Wiley. ISBN-10: 0-471-73696-1, ISBN-13: 978-0-471-73696-7. Google Scholar
  7. 7.
    Genesis Web Science Document G: Solar Wind Properties (2002), California Institute of Technology,
  8. 8.
    Cranmer, S. R., Matthaeus, W. H., Breech, B. A., Kasper, J. C. (2009), Empirical constraints on proton and electron heating in the fast solar wind. The Astrophysical Journal, 702, 1604–1614. doi: 10.1088/0004-637X/702/2/1604. CrossRefGoogle Scholar
  9. 9.
    Lide, D. R. (Ed.) (2009), CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press. Google Scholar
  10. 10.
    Version 2009 of the Internet Edition of the CRC Handbook of Chemistry and Physics. Google Scholar
  11. 11.
    Calculation of Atomic Photoionization Cross Sections (2009),
  12. 12.
    Hastings, D., Garrett, H. B. (1996), Spacecraft-Environment Interactions. Cambridge: Cambridge University Press (first paperback edition, 2004, ISBN 0-521-60756-6). CrossRefGoogle Scholar
  13. 13.
    Hofmann, P. (2008), Solid State Physics: An Introduction. New York: Wiley-VCH. ISBN 978-3-527-40861-0. Google Scholar
  14. 14.
    Horedt, G. P. (2004), Polytropes—Applications in Astrophysics and Related Fields. Dordrecht: Kluwer Academic. ISBN 1-4020-2350-2. Google Scholar
  15. 15.
  16. 16.
    Friedrich, H. (2005), Theoretical Atomic Physics. Berlin: Springer. ISBN 3-540-25644-X. Google Scholar
  17. 17.
    Garrett, H. B. (1981), The charging of spacecraft surfaces. Reviews of Geophysics and Space Physics, 19(4), 577–616. CrossRefGoogle Scholar
  18. 18.
    Garrett, H. B., Minow, J. I. (2004), Charged Particle Effects on Solar Sails: an Overview, NASA/JPL, September 28–29, downloadable from
  19. 9.
    Goedbloed, J. P. H., Poedts, S. (2004), Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge: Cambridge University Press. ISBN 0-521-62607-2. CrossRefGoogle Scholar
  20. 20.
    Groß, A. (2009), Theoretical Surface Science: a Microscopic Perspective (2nd edn.). Berlin: Springer. ISBN 978-3540689669. CrossRefGoogle Scholar
  21. 21.
    Kittel, C. (2005), Introduction to Solid State Physics (8th edn.). New York: Wiley. ISBN 0-471-41526-X. Google Scholar
  22. 22.
    Laframboise, J. G., Kamitsuma, M. (1983), The threshold temperature effect in high voltage spacecraft charging. In Proc. Air Force Geophys., Workshop Natural Charg. Large Space Struct. Near Earth Polar Orbit (pp. 293–308). AFRL-TR-83-0046, ADA-134-894. Google Scholar
  23. 23.
    Lai, S. T. (1991), Spacecraft charging thresholds in single and double Maxwellian space environments. IEEE Transactions on Nuclear Science 38(6), 1629–1634. CrossRefGoogle Scholar
  24. 24.
    Lai, S. T., Tautz, M. F., Tobiska, K. (2006), Effects of solar UV on spacecraft charging in sunlight. In 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 9–12 January 2006. AIAA 2006-407. Google Scholar
  25. 25.
    Lai, S. T., Tautz, M. F. (2006), Aspects of spacecraft charging in sunlight. IEEE Transactions on Plasma Science, 34(5). Google Scholar
  26. 26.
    Lai, S. T. (2012), Fundamentals of Spacecraft Charging: Spacecraft Interactions with Space Plasmas. Princeton: Princeton University Press. ISBN 0691129479, ISBN 978-0691129471. Google Scholar
  27. 27.
    Lang, K. R. (1999), Astrophysical Formulae (3rd edn.). Berlin: Springer. ISBN 3-540-29692-1. Google Scholar
  28. 21.
    Meyer-Vernet, N. (2007), Basics of the Solar Wind, Cambridge Atmospheric and Space Science Series. Cambridge: Cambridge University Press. ISBN 978-0-521-81420-1. CrossRefGoogle Scholar
  29. 29.
    Michaelides, A., Sheffler, M. (2006), An Introduction to the Theory of Metal Surfaces, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany.
  30. 30.
    Mihaly, L., Martin, M. C. (1996), Solid State Physics (Problems and Solutions). New York: Wiley. ISBN 0-471-15287-0. Google Scholar
  31. 31.
    Mordovskaya, V. G., Oraevsky, V. N. (2003), In-situ measurements of the Phobos magnetic field during the Phobos-2 mission. In Sixth International Conference on Mars, Pasadena, CA, 20–25 July 2003, also Google Scholar
  32. 32.
    Mordovskaya, V. G., Oraevsky, V. N., Styashkin, V. A. (2003), The peculiarities of the interaction of Phobos with the solar wind are evidence of the Phobos magnetic obstacle (from Phobos-2 data). arXiv:physics/0212072v2 [].
  33. 33.
    Minor, J. L. (Ed.) (2004), Proc. 8th Spacecraft Charging Technology Conference, 20–24 October 2003. NASA/CP2004213091. Google Scholar
  34. 34.
    Nastasi, M., Mayer, J., Hirvonen, J. (1996), Ion-Solid Interactions—Fundamentals and Applications. Cambridge: Cambridge University Press. ISBN 0-521-37376-X. CrossRefGoogle Scholar
  35. 35.
    Nishi, Y., Doering, R. (2000), Handbook of Semiconductor Manufacturing Technology. New York: Marcel Dekker. ISBN 0-8247-8783-8. Google Scholar
  36. 36.
    NRL Plasma Formulary (2009),
  37. 37.
    NASA/GSFC OMNIWeb Interface,
  38. 38.
    Orloff, J. (2009), Handbook of Charged Particle Optics (2nd edn.). Boca Raton: CRC Press. ISBN 978-1-4200-4554-3. Google Scholar
  39. 39.
    Parker, E. N. (2001), A History of the Solar Wind Concept in the Century of Space Science, Vol. 1. Dordrecht: Kluwer Academic. ISBN 978-0-7923-7196-0. Now owned by Springer, Dordrecht, 2002. Google Scholar
  40. 40.
    Patterson, J. D., Bailey, B. C. (2007), Solid-State Physics—Introduction to the Theory. Berlin: Springer. ISBN 103-540-24115-9, ISBN 978-3-540-24115-7. Google Scholar
  41. 41.
    Piel, A. (2010), Plasma Physics, An Introduction to Laboratory, Space, and Fusion Plasmas. Berlin: Springer. ISBN 978-3-642-10490-9, e-ISBN 978-3-642-10491-6. CrossRefzbMATHGoogle Scholar
  42. 42.
    Rozelot, J.-P. (2006), Solar and Heliospheric Origins of Space Weather Phenomena. Berlin: Springer, ISBN 3-540-33758-X, ISBN 978-3-540-33758-4. CrossRefGoogle Scholar
  43. 43.
    Nakamura, K., et al. (Particle Data Group) (2010), Journal of Physics G, 37, 075021. CrossRefGoogle Scholar
  44. 44.
    Soop, M. (1972), Numerical calculations of the perturbation of an electric field around a spacecraft. In R. J. L. Grard (Ed.), Photons and Particle Interactions with Surfaces in Space. Dordrecht: Reidel. Google Scholar
  45. 45.
    Spitzer, L. Jr. (1961), Physics of Fully Ionized Gases. 2nd revised edition by Dover (2006). ISBN 9780486449821, ISBN 978-0486449821. Google Scholar
  46. 46.
    Ziegler, J. F., Biersack, J. P., Ziegler, M. D. (2008), SRIM: The Stopping and Range of Ions in Matter. New York: SRIM. ISBN 978-0-9654207-1-6, ISBN 0-9654207-1-X. Google Scholar
  47. 47.
    Ziegler, J. F. (2008), SRIM-2008.4: The Stopping and Range of Ions in Matter, setup-file downloadable from
  48. 48.
    Yeh, J. J. (1993). Atomic Calculation of Photoionization Cross-Sections and Asymmetry Parameters. New York: Gordon and Breach. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Giovanni Vulpetti
    • 1
  1. 1.International Academy of Astronautics—Paris, FranceRomeItaly

Personalised recommendations