Skip to main content

Phase Transition

  • Chapter
  • First Online:
Introduction to Structural Chemistry

Abstract

Polymorphism (first described by Mitscherlich in 1823) is the existence of different crystal modifications of the same chemical substance. Phase transitions between different polymorphs can be classified thermodynamically (1st and 2nd order) or by the depth of structural rearrangement (reconstructive, displacive, order-disorder). Relative stabilities of inorganic polymorphs are rationalized (with limited success) in terms of radii, charges and hardness of ions, electronegativities, etc., or described by structural maps. Recently, it became possible also to explore transitions between structurally different amorphous solids or, rarely, liquids (‘polyamorphism’). The heats of melting, sublimation and evaporation of elements and compounds, as well as enthalpies of solid-solid transitions, vary widely depending the bonding type, polarity and polarizability, and the extent of structural change. Evaporation heats of homologous organic compounds show clear additive trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buerger MJ (1951) Phase transformations in solids. Wiley, New York

    Google Scholar 

  2. Toledano P, Dmitriev V (1996) Reconstructive phase transitions. World Scientific, Singapore

    Google Scholar 

  3. Prewitt CT (1985) Crystal-chemistry—past, present, and future. Amer Miner 70:443–454

    CAS  Google Scholar 

  4. Batsanov SS (1983) On some crystal-chemical peculiarities of simple inorganic halogenides. Zhurnal Neorganicheskoi Khimii 28:830–836 (in Russian)

    CAS  Google Scholar 

  5. Batsanov SS (1986) Experimental foundations of structural chemistry. Standarty, Moscow (in Russian)

    Google Scholar 

  6. Phillips JC, Lukowsky G (2009) Bonds and bands in semiconductors, 2nd ed Academic, New York

    Google Scholar 

  7. Wemple SH (1973) Effective charges and ionicity. Phys Rev B7:4007–4009

    Google Scholar 

  8. Wemple SH (1973) Refractive-index behavior of amorphous semiconductors and glasses. Phys Rev B7:3767–3777

    Google Scholar 

  9. Revesz AG, Wemple SH, Gibbs GV (1981) Structural ordering related to chemical bonds in random networks. J Physique 42:C4–217–C4–219

    Google Scholar 

  10. Mooser E, Pearson WB (1959) On the crystal chemistry of normal valence compounds. Acta Cryst 12:1015–1022

    CAS  Google Scholar 

  11. Watson RE, Bennet LH (1978) Transition-metals—d-band hybridization, electronegativities and structural stability of intermetallic compounds. Phys Rev B18:6439–6449

    Google Scholar 

  12. Watson RE, Bennet LH (1982) Structural maps and parameters important to alloy phase stability. MRS Proceedings 19:99–104

    CAS  Google Scholar 

  13. Burdett JK, Price GD, Price SL (1981) Factors influencing solid-state structure—an analysis using pseudopotential radii structural maps. Phys. Rev. B 24:2903–2912

    CAS  Google Scholar 

  14. Pettifor DG (1984) A chemical-scale for crystal-structure maps. Solid State Commun 51:31–34

    CAS  Google Scholar 

  15. Pettifor DG (1985) Phenomenological and microscopic theories of structural stability. J Less-Comm Met 114:7–15

    CAS  Google Scholar 

  16. Pettifor DG (1986) The structures of binary compounds: phenomenological structure maps. J Phys C19:285–313

    Google Scholar 

  17. Pettifor DG (1992) Theoretical predictions of structure and related properties of intermetallics. Mater Sci Technol 8:345–349

    CAS  Google Scholar 

  18. Pettifor DG (2003) Structure maps revisited. J Phys Cond Matter 15:V13-V16

    CAS  Google Scholar 

  19. Dudareva AG, Mоlоdkin AK, Lоvеtskaya GA (1988) The prediction of compound formation in GaX3-MXn and InX3-MXn systems, where X = Cl, Br, I. Russ J Inorg Chem 33:916–917

    Google Scholar 

  20. Sproul G (1994) Electronegativity and bond type: evaluation of electronegativity scales. J Phys Chem 98:6699–6703

    CAS  Google Scholar 

  21. Burdett JK (1997) Chemical bond: a dialog. Wiley, Chichester

    Google Scholar 

  22. Tosi MP (1994) Melting and liquid structure of polyvalent metal-halides. Z Phys Chem 184:121–138

    CAS  Google Scholar 

  23. Villars P (1983) A 3-dimensional structural stability diagram for 998 binary AB intermetallic compounds. J Less Comm Met 92:215–238

    CAS  Google Scholar 

  24. Villars P (1984) A 3-dimensional structural stability diagram for 1011 binary AB2 intermetallic compounds. J Less Comm Met 99:33–43

    CAS  Google Scholar 

  25. Villars P (1984) 3-dimensional structural stability diagrams for 648 binary AB3 and 389 binary A3B5 intermetallic compounds. J Less Comm Met 102:199–211

    CAS  Google Scholar 

  26. Villars P (1985) A semiempirical approach to the prediction of compound formation for 3486 binary alloy systems. J Less Comm Met 109:93–115

    CAS  Google Scholar 

  27. Villars P (1986) A semiempirical approach to the prediction of compound formation for 96446 ternary alloy systems, II. J Less Comm Met 119:175–188

    CAS  Google Scholar 

  28. Villars P, Phillips JC (1988) Quantum structural diagrams and high-T c superconductivity. Phys Rev B37:2345–2348

    Google Scholar 

  29. Rabe KM, Phillips JC, Villars P, Brown ID (1992) Global multinary structural chemistry of stable quasicrystals, high-T c ferroelectrics, and high-T c superconductors. Phys Rev B45:7650–7676

    Google Scholar 

  30. Ubbelodе AR (1978) The molted state of matter. Wiley, New York

    Google Scholar 

  31. Mnyukh Yu (2001) Fundamentals of solid state phase transitions, ferromagnetism and ferrolectricity. 1st Books Library, Washington DC

    Google Scholar 

  32. Bernstein J (2002) Polymorphism in organic crystals. IUCR Monograph on Crystallography, No. 14. Clarendon Press, Oxford

    Google Scholar 

  33. Herbstein FH (2006) On the mechanism of some first-order enantiotropic solid-state phase transitions. Acta Cryst B 62:341–383

    Google Scholar 

  34. Braga D, Grepioni F (2000) Organometallic polymorphism and phase transitions. Chem Soc Rev 29:229–238

    CAS  Google Scholar 

  35. Ilott AJ, Palucha S, Batsanov AS et al (2010) Elucidation of structure and dynamics in solid octafluoronaphthalene. J Am Chem Soc 132:5179–5185

    PubMed  CAS  Google Scholar 

  36. Tsuji K, Hattori T, Mori T et al (2004) Pressure dependence of the structure of liquid group 14 elements. J Phys Cond Matter 16:S989-S996

    CAS  Google Scholar 

  37. Daisenberger D, Wilson M, McMillan PF et al (2007) High-pressure X-ray scattering and computer simulation studies of density-induced polyamorphism in silicon. Phys Rev B75:224118

    Google Scholar 

  38. Brazhkin VV, Katayama Y, Trachenko K et al (2008) Nature of the structural transformations in B2O3 glass under high pressure. Phys Rev Lett 101:035702

    PubMed  CAS  Google Scholar 

  39. Lee SK, Mibe K, Fei Y et al (2005) Structure of B2O3 glass at high pressure. Phys Rev Lett 94:165507

    PubMed  Google Scholar 

  40. Hamaya N, Sato K, Usui-Watanaba K et al (1997) Amorphization and molecular dissociation of SnI4 at high pressure. Phys Rev Lett 79:4597–4600

    CAS  Google Scholar 

  41. Itie JP (1992) X-ray absorption-spectroscopy under high-pressure. Phase Trans 39:81–98

    CAS  Google Scholar 

  42. Giefers H, Porsch F, Wortmann G (2005) Thermal disproportionation of SnO under high pressure. Solid State Ionics 176:1327–1332

    CAS  Google Scholar 

  43. Giefers H, Porsch F, Wortmann G (2006) Structural study of SnO at high pressure. Physica B 373:76–81

    CAS  Google Scholar 

  44. Lide DR (ed) (2007–2008) Handbook of chemistry and physics, 88th edn. CRC Press, New York

    Google Scholar 

  45. Glushko VP (ed) (1981) Thermochemical constants of substances. USSR Acad Sci, Moscow (in Russian)

    Google Scholar 

  46. Kulakоv MP (1990) Change of specific volume of AIIBVI compounds on melting. Inorg Mater 26:1947–1950

    Google Scholar 

  47. Nasar A, Shamsuddin M (1990) Thermodynamic properties of ZnTe. J Less Comm Met 161:93–99

    CAS  Google Scholar 

  48. Nasar A, Shamsuddin M (1990) An investigation of thermodynamic properties of cadmium sulphide. Thermochim Acta 197:373–380

    Google Scholar 

  49. Nasar A, Shamsuddin M (1990) Thermodynamic properties of cadmium telluride. High Temp Sci 28:245–254

    Google Scholar 

  50. Nasar A, Shamsuddin M (1990) Thermodynamic properties of cadmium selenide. J Less Comm Met 158:131–135

    CAS  Google Scholar 

  51. Nasar A, Shamsuddin M (1990) Thermodynamic investigations of mercury telluride. J Less Comm Met 161:87–92

    CAS  Google Scholar 

  52. Nasar A, Shamsuddin M (1992) Investigations of the thermodynamic properties of zinc chalcogenides. Thermochim Acta 205:157–169

    CAS  Google Scholar 

  53. Gurvich LV, Veyts IV, Alcock CB (eds) (1994) Thermodynamical properties of individual substances. CRC Press, Boca Raton, FL

    Google Scholar 

  54. Guillermet AF, Frisk K (1994) Thermochemical assessment and systematics of bonding strengths in solid and liquid “MeN” 3d transition-metal nitrides. J Alloys Comp 203:77–89

    Google Scholar 

  55. Shamsuddin M, Nasar A (1988/1989) Thermodynamic properties of cadmium telluride. High Temp Sci 28:245–254

    CAS  Google Scholar 

  56. Huang Y, Brebrick RF (1988) Partial pressures and thermodynamic properties for lead telluride. J Electrochem Soc 135: 486–496

    Google Scholar 

  57. Lamoreaux RH, Hildenbrand DL, Brewer L (1987) High-temperature vaporization behavior of oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg. J Phys Chem Refer Data 16:419–443

    CAS  Google Scholar 

  58. Bashir-Hashemi A, Chickos JS, Hanshaw W et al (2004) The enthalpy of sublimation of cubane. Thermochim Acta 424:91–97

    CAS  Google Scholar 

  59. Rojas A, Vieyra-Eusebio MT (2011) Enthalpies of sublimation of ferrocene and nickelocene. J Chem Thermodyn 43:1738–1747

    CAS  Google Scholar 

  60. Portman R, Quin M, Sagert N et al (1989) A Knudsen cell mass-spectrometer study of the vaporization of cesium telluride and cesium tellurite. Thermochim Acta 144:21–31

    CAS  Google Scholar 

  61. Piacente V, Scardala P (1994) A study on the vaporization of copper(II) selenide. J Mater Sci Lett 13:1343–1345

    CAS  Google Scholar 

  62. Scardala P, Piacente V, Perro D (1990) Standard sublimation enthalpy of solid Ag2Se. J Less-Comm Met 162:11–21

    CAS  Google Scholar 

  63. Adami M, Ferro D, Piacente V, Scardala P (1987) Vaporization behavior and sublimation enthalpy of solid Ag2Te. High Temp Sci 23:173–186

    CAS  Google Scholar 

  64. Bardi G, Trionfetti G (1990) Vapor-pressure and sublimation enthalpy of zinc selenide and zinc telluride. Thermochim Acta 157:287–294

    CAS  Google Scholar 

  65. Bardi G, Ieronimakis K, Trionfetti G (1988) Vaporization enthalpy of cadmium selenide and telluride. Thermochim Acta 129:341–343

    CAS  Google Scholar 

  66. O’Hare PAG, Curtiss LA (1995) Thermochemistry of germanium + sulfur. J Chem Thermodyn 27:643–662

    Google Scholar 

  67. Tomaszkiewicz I, Hope GA, O’Hare PAG (1995) Thermochemistry of germanium + tellurium. J Chem Thermodyn 27:901–919

    CAS  Google Scholar 

  68. Wiedemeier H, Csillag FJ (1979) Equilibrium sublimation and thermodynamic properties of SnS. Thermochim Acta 34:257–265

    CAS  Google Scholar 

  69. Botor J, Milkowska G, Konieczny J (1989) Vapor-pressure and thermodynamics of PbS(s). Thermochim Acta 137:269–279

    CAS  Google Scholar 

  70. Konieczny J, Botor J (1990) The application of a thermobalance for determining the vapour pressure and thermodynamic properties. J Therm Analys Calorimetry 36:2015–2019.

    CAS  Google Scholar 

  71. Fajans K (1967) Degrees of polarity and mutual polarization of ions in the molecules of alkali fluorides, SrO and BaO. Struct Bonding 3:88–105

    CAS  Google Scholar 

  72. Gopikrishnan CR, Jose D, Datta A (2012) Electronic structure, lattice energies and Born exponents for alkali halides from first principles. AIP Advances 2:012131

    CAS  Google Scholar 

  73. Urusov VS (1975) Energetic crystal chemistry. Nauka, Moscow (in Russian)

    Google Scholar 

  74. Acree W, Chickos JS (2010) Phase transition enthalpy measurements of organic and organometallic compounds. Sublimation, vaporization and fusion enthalpies from 1880 to 2010. J Phys Chem Refer Data 39:043101

    Google Scholar 

  75. Nikitin MI, Rakov EG, Tsirel’nikov VI, Khaustov SV (1997) Enthalpies of formation of manganese di- and trifluorides. Russ J Inorg Chem 42:1039–1042

    Google Scholar 

  76. Brunetti B, Piacente V (1996) Torsion and Knudsen measurements of cobalt and nickel difluorides and their standard sublimation enthalpies. J Alloys Comp 236:63–69

    CAS  Google Scholar 

  77. Bardi G, Brunetti B, Ciccariello E, Piacente V (1997) Vapour pressures and sublimation enthalpies of cobalt and nickel dibromides. J Alloys Comp 247:202–205

    CAS  Google Scholar 

  78. Ionova GV (2002) Thermodynamic properties of halide compounds of tetravalent transactinides. Russ Chem Rev 71:401–416

    CAS  Google Scholar 

  79. Struck CW, Baglio JA (1991) Estimates for the enthalpies of formation of rate-earth solid and gaseous trihalides. High Temp Sci 31:209–237

    CAS  Google Scholar 

  80. Hackert A, Plies V (1998) Eine neue methode zur messung von temperaturabhängigen partialdrücken in geschlossenen systemen. Die bestimmung der bildungsenthalpie und -entropie von PtI2(s). Z anorg allgem Chem 624:74–80

    CAS  Google Scholar 

  81. Parker VB, Khodakovskii IL (1995) Thermodynamic properties of the aqueous ions (2 + and 3 +) of iron and the key compounds of iron. J Phys Chem Refer Data 24:1699–1745

    CAS  Google Scholar 

  82. Dittmer G, Niemann U (1981) Heterogeneous reactions and chemical-transport of tungsten with halogens and oxygen under steady-state conditions of incandescent lamps. Philips J Res 36:87–111

    CAS  Google Scholar 

  83. Rojas-Aguilar A, Orozco-Guareño E, Martinez-Herrera M (2001) An experimental system for measurement of enthalpies of sublimation by d.s.c. J Chem Thermodyn 33:1405–1418

    CAS  Google Scholar 

  84. Lobo LQ, Ferreira AGM (2001) Phase equilibria from the exactly integrated Clapeyron equation. J Chem Thermodyn 33:1597–1617

    CAS  Google Scholar 

  85. Chickos JS, Acree WE (2003) Enthalpies of vaporization of organic and organometallic compounds, 1880–2002. J Phys Chem Refer Data 32:519–878

    CAS  Google Scholar 

  86. Huron M-J, Claverie P (1972) Calculation of interaction energy of one molecule with its whole surrounding. J Phys Chem 76:2123–2133

    CAS  Google Scholar 

  87. Korolev GV, Il’in AA, Sizov EA et al (2000) Increments of enthalpy of vaporization of organic compounds. Russ J General Chem 70:1020–1022

    CAS  Google Scholar 

  88. Chickos JS, Zhao H, Nichols G (2004) The vaporization enthalpies and vapor pressures of fatty acid methyl esters. Thermochim Acta 424:111–121

    CAS  Google Scholar 

  89. Verevkin SP, Emel’yanenko VN, Algarra M et al (2011) Vapor pressure and enthalpies of vaporization of azides. J Chem Thermodyn 43:1652–1659

    CAS  Google Scholar 

  90. Konings RJM, Beneš O (2010) Thermodynamic properties of the f-elements and their compounds: the lanthanide and actinide metals. J Phys Chem Refer Data 39:043102

    Google Scholar 

  91. Kleykamp H (2000) Thermal properties of beryllium. Thermochim Acta 345:179–184

    CAS  Google Scholar 

  92. Digonskii VV, Digonskii SV (1992) Laws of the diamond formation. Nedra, St. Peterburg (in Russian)

    Google Scholar 

  93. Diky VV, Kabo GJ (2000) Thermodynamic properties of C60 and C70 fullerenes. Russ Chem Rev 69:95–104

    CAS  Google Scholar 

  94. Peletskii VE, Petrova II, Samsonov BN (2001) Investigation of the heat of polymorphous transformation in zirconium. High Temp Sci 39:666–669

    CAS  Google Scholar 

  95. Pistorius CWFT (1965) Polymorphic transitions of alkali bromides and iodides at high pressures to 200 °C. J Phys Chem Solids 26:1003–1011

    CAS  Google Scholar 

  96. Titov VA, Chusova TP, Stepin Yu G (1999) On thermodynamic characteristics of In-I system compounds. Z Anorg Allgem Chem 625:1013–1018

    CAS  Google Scholar 

  97. Balyakina IV, Gartman VK, Kulakov MP, Peresada GI (1990) Phase transition in cadmium selenide. Inorg Mater 26:2147–2149

    Google Scholar 

  98. Leute V, Schmidt R (1991) The quasiternary system (CdkPb1 − k)(SLTe1 − L). Z Phys Chem 172:81–103

    CAS  Google Scholar 

  99. Leute V, Brinkmann S, Linnenbrink J, Schmidtke HM (1995) The phase diagram of the quasi-ternary system (Sn, Pb)(S, Te). Z Naturforsch 50a:459–467

    Google Scholar 

  100. Örlygsson G, Harbrecht B (2001) Structure, properties, and bonding of ZrTe (MnP type), a low-symmetry, high-temperature modification of ZrTe (WC type). J Am Chem Soc 123:4168–4173

    PubMed  Google Scholar 

  101. Stølen S, Johnsen H-B, Abe R et al (1999) Heat capacity and thermodynamic properties of GeSe2. J Chem Thermodyn 31:465–477

    Google Scholar 

  102. Reznitskii LA (2000) Energetics of crystalline oxides. Moscow Univ Press, Moscow (in Russian)

    Google Scholar 

  103. Moriya Y, Navrotsky A (2006) High-temperature calorimetry of zirconia: heat capacity and thermodynamics of the monoclinic-tetragonal phase transition. J Chem Thermodyn 38:211–223

    CAS  Google Scholar 

  104. Breuer K-H, Eysel W (1982) The calorimetric calibration of differential scanning calorimetry cells. Thermochim Acta 57:317–329

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stepan S. Batsanov .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Batsanov, S., Batsanov, A. (2012). Phase Transition. In: Introduction to Structural Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4771-5_9

Download citation

Publish with us

Policies and ethics