Skip to main content

The Functional Size of GPCRs – Monomers, Dimers or Tetramers?

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 63))

Abstract

In almost 16 years since the word “dimer” was used in a publication to describe the organization of G protein-coupled receptors (GPCRs), a large number of studies have since weighed in on this notion. Are native, functional GPCRs monomers, dimers or as some would suggest even higher order structures? Here, we review some of the latest evidence regarding the organization of these receptors in both homo- and hetero-oligomeric formats, with a particular focus on β-adrenergic receptors. This is particularly important for understanding the allosteric nature of receptor/receptor interactions. It is likely that, over the course of evolution, mechanisms have come into play using all of the possible variations in receptor/receptor stoichiometry, depending on the cell and the physiological context in question. Finally, we provide some data that suggests that higher order structures of GPCRs, as with dimers themselves are probably assembled in the ER.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agnati LF, Guidolin D, Albertin G, Trivello E, Ciruela F, Genedani S, Tarakanov A, Fuxe K (2010) An integrated view on the role of receptor mosaics at perisynaptic level: focus on adenosine A(2A), dopamine D(2), cannabinoid CB(1), and metabotropic glutamate mGlu(5) receptors. J Recept Signal Transduct Res 30(5):355–369. doi:10.3109/10799893.2010.487492

    Article  PubMed  CAS  Google Scholar 

  • Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M, Bouvier M (2000) Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci U S A 97(7):3684–3689

    PubMed  CAS  Google Scholar 

  • Baragli A, Grieco ML, Trieu P, Villeneuve LR, Hébert TE (2008) Heterodimers of adenylyl cyclases 2 and 5 show enhanced functional responses in the presence of Ga s. Cell Signal 20(3):480–492. doi:10.1016/j.cellsig.2007.10.033, pii:S0898-6568(07)00329-4

    Article  PubMed  CAS  Google Scholar 

  • Barki-Harrington L, Luttrell LM, Rockman HA (2003) Dual inhibition of beta-adrenergic and angiotensin II receptors by a single antagonist: a functional role for receptor-receptor interaction in vivo. Circulation 108(13):1611–1618. doi:10.1161/01.CIR.0000092166.30360.78, pii:01.CIR.0000092166.30360.78

    Article  PubMed  CAS  Google Scholar 

  • Berthouze M, Ayoub M, Russo O, Rivail L, Sicsic S, Fischmeister R, Berque-Bestel I, Jockers R, Lezoualc’h F (2005) Constitutive dimerization of human serotonin 5-HT4 receptors in living cells. FEBS Lett 579(14):2973–2980. doi:10.1016/j.febslet.2005.04.040, pii:S0014-5793(05)00515-6

    Article  PubMed  CAS  Google Scholar 

  • Breit A, Lagacé M, Bouvier M (2004) Hetero-oligomerization between beta2- and beta3-adrenergic receptors generates a beta-adrenergic signaling unit with distinct functional properties. J Biol Chem 279(27):28756–28765

    Article  PubMed  CAS  Google Scholar 

  • Bulenger S, Marullo S, Bouvier M (2005) Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol Sci 26(3):131–137. doi:10.1016/j.tips.2005.01.004, pii:S0165-6147(05)00020-9

    Article  PubMed  CAS  Google Scholar 

  • Carriba P, Navarro G, Ciruela F, Ferre S, Casado V, Agnati L, Cortes A, Mallol J, Fuxe K, Canela EI, Lluis C, Franco R (2008) Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat Methods 5(8):727–733. doi:10.1038/nmeth.1229, pii:nmeth.1229

    Article  PubMed  CAS  Google Scholar 

  • Dai S, Hall DD, Hell JW (2009) Supramolecular assemblies and localized regulation of voltage-gated ion channels. Physiol Rev 89(2):411–452. doi:10.1152/physrev.00029.2007, pii:89/2/411

    Article  PubMed  CAS  Google Scholar 

  • Daub H, Wallasch C, Lankenau A, Herrlich A, Ullrich A (1997) Signal characteristics of G protein-transactivated EGF receptor. EMBO J 16(23):7032–7044. doi:10.1093/emboj/16.23.7032

    Article  PubMed  CAS  Google Scholar 

  • David M, Richer M, Mamarbachi AM, Villeneuve LR, Dupré DJ, Hébert TE (2006) Interactions between GABA-B(1) receptors and Kir 3 inwardly rectifying potassium channels. Cell Signal 18(12):2172–2181

    Article  PubMed  CAS  Google Scholar 

  • Dong C, Filipeanu CM, Duvernay MT, Wu G (2007) Regulation of G protein-coupled receptor export trafficking. Biochim Biophys Acta 1768:853–870

    Article  PubMed  CAS  Google Scholar 

  • Dupré DJ, Hébert TE (2006) Biosynthesis and trafficking of seven transmembrane receptor signalling complexes. Cell Signal 18(10):1549–1559

    Article  PubMed  CAS  Google Scholar 

  • Dupré DJ, Robitaille M, Ethier N, Villeneuve LR, Mamarbachi AM, Hébert TE (2006) Seven transmembrane receptor core signalling complexes are assembled prior to plasma membrane trafficking. J Biol Chem 281(45):34561–34573

    Article  PubMed  CAS  Google Scholar 

  • Dupré DJ, Baragli A, Rebois RV, Ethier N, Hébert TE (2007) Signalling complexes associated with adenylyl cyclase II are assembled during their biosynthesis. Cell Signal 19:481–489

    Article  PubMed  CAS  Google Scholar 

  • Fonseca JM, Lambert NA (2009) Instability of a class a G protein-coupled receptor oligomer interface. Mol Pharmacol 75(6):1296–1299. doi:10.1124/mol.108.053876, pii:mol.108.053876

    Article  PubMed  CAS  Google Scholar 

  • Fung JJ, Deupi X, Pardo L, Yao XJ, Velez-Ruiz GA, Devree BT, Sunahara RK, Kobilka BK (2009) Ligand-regulated oligomerization of beta(2)-adrenoceptors in a model lipid bilayer. EMBO J 28(21):3315–3328. doi:10.1038/emboj.2009.267, pii:emboj2009267

    Article  PubMed  CAS  Google Scholar 

  • Gandia J, Galino J, Amaral OB, Soriano A, Lluis C, Franco R, Ciruela F (2008) Detection of higher-order G protein-coupled receptor oligomers by a combined BRET-BiFC technique. FEBS Lett 582(20):2979–2984. doi:10.1016/j.febslet.2008.07.045, pii:S0014-5793(08)00646-7

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Urizar E, Kralikova M, Mobarec JC, Shi L, Filizola M, Javitch JA (2008) Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J 27(17):2293–2304. doi:10.1038/emboj.2008.153, pii:emboj2008153

    Article  PubMed  CAS  Google Scholar 

  • Haack KK, Tougas MR, Jones KT, El-Dahr SS, Radhakrishna H, McCarty NA (2010) A novel bioassay for detecting GPCR heterodimerization: transactivation of beta 2 adrenergic receptor by bradykinin receptor. J Biomol Screen 15(3):251–260. doi:10.1177/1087057109360254, pii:1087057109360254

    Article  PubMed  CAS  Google Scholar 

  • Hague C, Uberti MA, Chen Z, Bush CF, Jones SV, Ressler KJ, Hall RA, Minneman KP (2004) Olfactory receptor surface expression is driven by association with the beta2-adrenergic ­receptor. Proc Natl Acad Sci U S A 101(37):13672–13676. doi:10.1073/pnas.0403854101, pii:0403854101

    Article  PubMed  CAS  Google Scholar 

  • Hamatake M, Aoki T, Futahashi Y, Urano E, Yamamoto N, Komano J (2009) Ligand-independent higher-order multimerization of CXCR4, a G-protein-coupled chemokine receptor involved in targeted metastasis. Cancer Sci 100(1):95–102. doi:10.1111/j.1349-7006.2008.00997.x, pii:CAS997

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Moreira IS, Urizar E, Weinstein H, Javitch JA (2009) Allosteric communication between protomers of dopamine class a GPCR dimers modulates activation. Nat Chem Biol 5(9):688–695. doi:10.1038/nchembio.199, pii:nchembio.199

    Article  PubMed  CAS  Google Scholar 

  • Hébert TE, Bouvier M (1998) Structural and functional aspects of G protein-coupled receptor oligomerization. Biochem Cell Biol 76(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Hébert TE, Moffett S, Morello JP, Loisel TP, Bichet DG, Barret C, Bouvier M (1996) A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem 271(27):16384–16392

    Article  PubMed  CAS  Google Scholar 

  • Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JE, Lazareno S, Molloy JE, Birdsall NJ (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci U S A 107(6):2693–2698. doi:10.1073/pnas.0907915107, pii:0907915107

    Article  PubMed  CAS  Google Scholar 

  • Hudson BD, Hébert TE, Kelly ME (2010) Physical and functional interaction between CB1 cannabinoid receptors and beta2-adrenoceptors. Br J Pharmacol 160(3):627–642. doi:10.1111/j.1476-5381.2010.00681.x, pii:BPH681

    Article  PubMed  CAS  Google Scholar 

  • Joiner ML, Lise MF, Yuen EY, Kam AY, Zhang M, Hall DD, Malik ZA, Qian H, Chen Y, Ulrich JD, Burette AC, Weinberg RJ, Law PY, El-Husseini A, Yan Z, Hell JW (2010) Assembly of a beta2-adrenergic receptor – GluR1 signalling complex for localized cAMP signalling. EMBO J 29(2):482–495. doi:10.1038/emboj.2009.344, pii:emboj2009344

    Article  PubMed  CAS  Google Scholar 

  • Jordan BA, Trapaidze N, Gomes I, Nivarthi R, Devi LA (2001) Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. Proc Natl Acad Sci U S A 98(1):343–348

    PubMed  CAS  Google Scholar 

  • Kasai RS, Suzuki KG, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, Kusumi A (2011) Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J Cell Biol 192(3):463–480. doi:10.1083/jcb.201009128, pii:jcb.201009128

    Article  PubMed  CAS  Google Scholar 

  • Katritch V, Cherezov V, Stevens RC (2012) Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci 33(1):17–27. doi:10.1016/j.tips.2011.09.003, pii:S0165-6147(11)00172-6

    Article  PubMed  CAS  Google Scholar 

  • Kern A, Albarran-Zeckler R, Walsh HE, Smith RG (2012) Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism. Neuron 73(2):317–332. doi:10.1016/j.neuron.2011.10.038, pii:S0896-6273(11)01087-7

    Article  PubMed  CAS  Google Scholar 

  • Kuravi S, Lan TH, Barik A, Lambert NA (2010) Third-party bioluminescence resonance energy transfer indicates constitutive association of membrane proteins: application to class a g-protein-coupled receptors and g-proteins. Biophys J 98(10):2391–2399. doi:10.1016/j.bpj.2010.02.004, pii:S0006-3495(10)00232-8

    Article  PubMed  CAS  Google Scholar 

  • Lan TH, Kuravi S, Lambert NA (2011) Internalization dissociates beta2-adrenergic receptors. PLoS One 6(2):e17361. doi:10.1371/journal.pone.0017361

    Article  PubMed  CAS  Google Scholar 

  • Larocca TJ, Schwarzkopf M, Altman P, Zhang S, Gupta A, Gomes I, Alvin Z, Champion HC, Haddad G, Hajjar RJ, Devi LA, Schecter AD, Tarzami ST (2010) beta2-Adrenergic receptor signaling in the cardiac myocyte is modulated by interactions with CXCR4. J Cardiovasc Pharmacol 56(5):548–559. doi:10.1097/FJC.0b013e3181f713fe

    Article  PubMed  CAS  Google Scholar 

  • Lavine N, Ethier N, Oak JN, Pei L, Liu F, Trieu P, Rebois RV, Bouvier M, Hébert TE, Van Tol HH (2002) G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. J Biol Chem 277(48):46010–46019

    Article  PubMed  CAS  Google Scholar 

  • Lavoie C, Hébert TE (2003) Pharmacological characterization of putative beta1-beta2-adrenergic receptor heterodimers. Can J Physiol Pharmacol 81(2):186–195

    Article  PubMed  CAS  Google Scholar 

  • Lavoie C, Mercier JF, Salahpour A, Umapathy D, Breit A, Villeneuve LR, Zhu WZ, Xiao RP, Lakatta EG, Bouvier M, Hébert TE (2002) Beta 1/beta 2-adrenergic receptor heterodimerization regulates beta 2-adrenergic receptor internalization and ERK signaling efficacy. J Biol Chem 277(38):35402–35410

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Gimenez JF, Canals M, Pediani JD, Milligan G (2007) The alpha1b-adrenoceptor exists as a higher-order oligomer: effective oligomerization is required for receptor maturation, surface delivery, and function. Mol Pharmacol 71(4):1015–1029. doi:10.1124/mol.106.033035, pii:mol.106.033035

    Article  PubMed  CAS  Google Scholar 

  • Luttrell DK, Luttrell LM (2003) Signaling in time and space: G protein-coupled receptors and mitogen-activated protein kinases. Assay Drug Dev Technol 1(2):327–338. doi:10.1089/15406580360545143

    Article  PubMed  CAS  Google Scholar 

  • Luttrell LM, van Biesen T, Hawes BE, Koch WJ, Krueger KM, Touhara K, Lefkowitz RJ (1997) G-protein-coupled receptors and their regulation: activation of the MAP kinase signaling pathway by G-protein-coupled receptors. Adv Second Messenger Phosphoprotein Res 31:263–277

    Article  PubMed  CAS  Google Scholar 

  • Ma AW, Redka DS, Pisterzi LF, Angers S, Wells JW (2007) Recovery of oligomers and cooperativity when monomers of the M2 muscarinic cholinergic receptor are reconstituted into phospholipid vesicles. Biochemistry 46(26):7907–7927. doi:10.1021/bi6026105

    Article  PubMed  CAS  Google Scholar 

  • Ma AW, Pawagi AB, Wells JW (2008) Heterooligomers of the muscarinic receptor and G proteins purified from porcine atria. Biochem Biophys Res Commun 374(1):128–133. doi:10.1016/j.bbrc.2008.06.105, pii:S0006-291X(08)01287-4

    Article  PubMed  CAS  Google Scholar 

  • Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485:321–326. doi:10.1038/nature10954, pii:nature10954

    Article  PubMed  CAS  Google Scholar 

  • Maudsley S, Pierce KL, Zamah AM, Miller WE, Ahn S, Daaka Y, Lefkowitz RJ, Luttrell LM (2000) The beta(2)-adrenergic receptor mediates extracellular signal-regulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor. J Biol Chem 275(13):9572–9580

    Article  PubMed  CAS  Google Scholar 

  • McGraw DW, Mihlbachler KA, Schwarb MR, Rahman FF, Small KM, Almoosa KF, Liggett SB (2006) Airway smooth muscle prostaglandin-EP1 receptors directly modulate beta2-adrenergic receptors within a unique heterodimeric complex. J Clin Invest 116(5):1400–1409. doi:10.1172/JCI25840

    Article  PubMed  CAS  Google Scholar 

  • McVey M, Ramsay D, Kellett E, Rees S, Wilson S, Pope AJ, Milligan G (2001) Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human delta-opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J Biol Chem 276(17):14092–14099

    PubMed  CAS  Google Scholar 

  • Mercier J-F, Salahpour A, Angers S, Breit A, Bouvier M (2002) Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J Biol Chem 277(47):44925–44931

    Article  PubMed  CAS  Google Scholar 

  • Milligan G (2007) G protein-coupled receptor dimerisation: molecular basis and relevance to function. Biochim Biophys Acta 1768(4):825–835. doi:10.1016/j.bbamem.2006.09.021, pii:S0005-2736(06)00380-4

    Article  PubMed  CAS  Google Scholar 

  • Milligan G (2009) G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. Br J Pharmacol 158(1):5–14. doi:10.1111/j.1476-5381.2009.00169.x, pii:BPH169

    Article  PubMed  CAS  Google Scholar 

  • Milligan G (2010) The role of dimerisation in the cellular trafficking of G-protein-coupled receptors. Curr Opin Pharmacol 10(1):23–29. doi:10.1016/j.coph.2009.09.010, pii:S1471-4892(09)00158-1

    Article  PubMed  CAS  Google Scholar 

  • Pétrin D, Hébert TE (2011) Imaging-based approaches to understanding G protein-coupled receptor signalling complexes. Methods Mol Biol 756:37–60

    Article  PubMed  Google Scholar 

  • Pisterzi LF, Jansma DB, Georgiou J, Woodside MJ, Chou JT, Angers S, Raicu V, Wells JW (2010) Oligomeric size of the m2 muscarinic receptor in live cells as determined by quantitative fluorescence resonance energy transfer. J Biol Chem 285(22):16723–16738. doi:10.1074/jbc.M109.069443, pii:M109.069443

    Article  PubMed  CAS  Google Scholar 

  • Prinster SC, Hague C, Hall RA (2005) Heterodimerization of g protein-coupled receptors: specificity and functional significance. Pharmacol Rev 57(3):289–298. doi:10.1124/pr.57.3.1, pii:57/3/289

    Article  PubMed  CAS  Google Scholar 

  • Qin K, Dong C, Wu G, Lambert NA (2011) Inactive-state preassembly of G(q)-coupled receptors and G(q) heterotrimers. Nat Chem Biol 7(10):740–747. doi:10.1038/nchembio.642, pii:nchembio.642

    Article  PubMed  CAS  Google Scholar 

  • Rashid AJ, So CH, Kong MM, Furtak T, El-Ghundi M, Cheng R, O’Dowd BF, George SR (2007) D1-D2 Dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci U S A 104(2):654–659. doi:10.1073/pnas.0604049104, pii:0604049104

    Article  PubMed  CAS  Google Scholar 

  • Rebois RV, Hébert TE (2003) Protein complexes involved in heptahelical receptor-mediated signal transduction. Receptors Channels 9(3):169–194

    Article  PubMed  CAS  Google Scholar 

  • Rebois RV, Robitaille M, Gales C, Dupré DJ, Baragli A, Trieu P, Ethier N, Bouvier M, Hébert TE (2006) Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 Channels in living cells. J Cell Sci 119(Pt 13):2807–2818

    Article  PubMed  CAS  Google Scholar 

  • Rebois RV, Robitaille M, Pétrin D, Zylbergold P, Trieu P, Hébert TE (2008) Combining protein complementation assays with resonance energy transfer to detect multipartner protein ­complexes in living cells. Methods 45(3):214–218. doi:10.1016/j.ymeth.2008.06.006, pii:S1046-2023(08)00103-5

    Article  PubMed  CAS  Google Scholar 

  • Robitaille M, Ramakrishnan N, Baragli A, Hébert TE (2009) Intracellular trafficking and assembly of specific Kir3 channel/G protein complexes. Cell Signal 21(4):488–501. doi:10.1016/j.cellsig.2008.11.011, pii:S0898-6568(08)00342-2

    Article  PubMed  CAS  Google Scholar 

  • Salahpour A, Angers S, Mercier JF, Lagace M, Marullo S, Bouvier M (2004) Homodimerization of the beta2-adrenergic receptor as a prerequisite for cell surface targeting. J Biol Chem 279(32):33390–33397

    Article  PubMed  CAS  Google Scholar 

  • Terrillon S, Bouvier M (2004) Roles of G-protein-coupled receptor dimerization. EMBO Rep 5(1):30–34

    Article  PubMed  CAS  Google Scholar 

  • Uberti MA, Hague C, Oller H, Minneman KP, Hall RA (2005) Heterodimerization with beta2-adrenergic receptors promotes surface expression and functional activity of alpha1D-adrenergic receptors. J Pharmacol Exp Ther 313(1):16–23. doi:10.1124/jpet.104.079541, pii:jpet.104.079541

    Article  PubMed  CAS  Google Scholar 

  • Vidi PA, Chemel BR, Hu CD, Watts VJ (2008a) Ligand-dependent oligomerization of dopamine D(2) and adenosine a(2A) receptors in living neuronal cells. Mol Pharmacol 74(3):544–551. doi:10.1124/mol.108.047472, pii:mol.108.047472

    Article  PubMed  CAS  Google Scholar 

  • Vidi PA, Chen J, Irudayaraj JM, Watts VJ (2008b) Adenosine a(2A) receptors assemble into higher-order oligomers at the plasma membrane. FEBS Lett 582(29):3985–3990. doi:10.1016/j.febslet.2008.09.062, pii:S0014-5793(08)00897-1

    Article  PubMed  CAS  Google Scholar 

  • Whorton MR, Bokoch MP, Rasmussen SG, Huang B, Zare RN, Kobilka B, Sunahara RK (2007) A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci U S A 104(18):7682–7687. doi:10.1073/pnas.0611448104, pii:0611448104

    Article  PubMed  CAS  Google Scholar 

  • Whorton MR, Jastrzebska B, Park PS, Fotiadis D, Engel A, Palczewski K, Sunahara RK (2008) Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J Biol Chem 283(7):4387–4394. doi:10.1074/jbc.M703346200, pii:M703346200

    Article  PubMed  CAS  Google Scholar 

  • Wrzal PK, Devost D, Pétrin D, Goupil E, Iorio-Morin C, Laporte SA, Zingg HH, Hébert TE (2012a) Allosteric interactions between the oxytocin receptor and the beta2-adrenergic receptor in the modulation of ERK1/2 activation are mediated by heterodimerization. Cell Signal 24(1):342–350. doi:10.1016/j.cellsig.2011.09.020, pii:S0898-6568(11)00301-9

    Article  PubMed  CAS  Google Scholar 

  • Wrzal PK, Goupil E, Laporte SA, Hébert TE, Zingg HH (2012b) Functional interactions between the oxytocin receptor and the beta2-adrenergic receptor: implications for ERK1/2 activation in human myometrial cells. Cell Signal 24(1):333–341. doi:10.1016/j.cellsig.2011.09.019, pii:S0898-6568(11)00300-7

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071. doi:10.1126/science.1194396, pii:science.1194396

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI, Mascarella SW, Westkaemper RB, Mosier PD, Roth BL, Cherezov V, Stevens RC (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485:327–332. doi:10.1038/nature10939, pii:nature10939

    Article  PubMed  CAS  Google Scholar 

  • Xu J, He J, Castleberry AM, Balasubramanian S, Lau AG, Hall RA (2003) Heterodimerization of alpha 2A- and beta 1-adrenergic receptors. J Biol Chem 278(12):10770–10777. doi:10.1074/jbc.M207968200, pii:M207968200

    Article  PubMed  CAS  Google Scholar 

  • Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2(2):107–117

    Article  PubMed  CAS  Google Scholar 

  • Zhu WZ, Chakir K, Zhang S, Yang D, Lavoie C, Bouvier M, Hébert TE, Lakatta EG, Cheng H, Xiao RP (2005) Heterodimerization of beta1- and beta2-adrenergic receptor subtypes ­optimizes beta-adrenergic modulation of cardiac contractility. Circ Res 97(3):244–251. doi:10.1161/01.RES.0000176764.38934.86, pii:01.RES.0000176764.38934.86

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Canadian Institutes of Health Research to T.E.H (MOP-36379) as well as the CIHR Team in GPCR Allosteric Regulation (CTiGAR). T.E.H. is a Chercheur National of the Fonds de la Recherche en Santé du Québec (FRSQ). We thank Vic Rebois (NIH) and the Hébert lab for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence E. Hébert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pétrin, D., Hébert, T.E. (2012). The Functional Size of GPCRs – Monomers, Dimers or Tetramers?. In: Dupré, D., Hébert, T., Jockers, R. (eds) GPCR Signalling Complexes – Synthesis, Assembly, Trafficking and Specificity. Subcellular Biochemistry, vol 63. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4765-4_4

Download citation

Publish with us

Policies and ethics