Advertisement

A Role for “Omics” Technologies in Exploration of the Seed Nutritional Quality

  • Marc GallandEmail author
  • Imen Lounifi
  • Gwendal Cueff
  • Aurélie Baldy
  • Halima Morin
  • Dominique Job
  • Loïc Rajjou
Chapter

Abstract

In the next 20 years, the world population is expected to reach a total of 8.3 billion people. Agriculture will have to produce sufficient food knowing that presently and globally agricultural production nearly matches world consumption. Yet, malnutrition is not only a matter of food amount but also concerns food nutritional quality. In particular, the nutritional value and quality of seeds should be improved to alleviate malnutrition and provide a well-balance diet. Progress in seed biology has considerably benefited from the rise in the last decade of the two model plants Arabidopsis and rice. Along with their genome sequences obtained respectively in 2000 for Arabidopsis and in 2005 for rice, functional genomics became possible because of the rapid development of their mutant libraries, full-length cDNA libraries, stock centers, web-accessible databases, and information portals, such as TAIR (The Arabidopsis Information Resource). Then, the development of high-throughput technological breakthroughs (e.g. DNA and protein array, mass spectrometry) helped to survey the omics state (transcriptome, proteome, and metabolome) of seeds at different developmental and environmental conditions. These approaches fuel candidate genes for seed quality (composition, germination vigor and capacity, good resistance to stress, etc.) that can be confirmed using functional genomics resources. Finally, exploitation of the confirmed candidate genes by plant breeders should improve seed nutritional quality and yield. In this chapter, we discuss how global “omics” technologies can help to find new candidate genes relevant for improvement of seed nutritional quality. Examples of omics application in unraveling the rice seed biology are particularly discussed.

Keywords

Metabolomics Nutrition Proteomics Rice Seed Transcriptomics 

Notes

Acknowledgements

This work was supported by the French Ministry for the Economy, Industry, and Employment (Ph.D. thesis support to ImenLounifi and post-doctoral position support to Dr. Marc Galland) in the frame of the Nutrice project.

References

  1. Abe T, Gusti RS, Ono M, Sasahara T (1996) Variations in glutelin and high molecular weight endosperm proteins among subspecies of rice (Oryza sativa L.) detected by two-dimensional electrophoresis. Genes Genet Syst 71:63–68PubMedCrossRefGoogle Scholar
  2. Agrawal GK, Rakwal R (2006) Rice proteomics: a cornerstone for cereal food crop proteomes. Mass Spectrom Rev 25:1–53PubMedCrossRefGoogle Scholar
  3. Agrawal GK, Jwa NS, Rakwal R (2009) Rice proteomics: ending phase I and the beginning of phase II. Proteomics 9:935–963PubMedCrossRefGoogle Scholar
  4. Agrawal GK, Rakwal R (2011) Rice proteomics: a move toward expanded proteome coverage to comparative and functional proteomics uncovers the mysteries of rice and plant biology. Proteomics 11:1630–1649Google Scholar
  5. Agrawal GK, Job D, Zivy M, Agrawal VP, Bradshaw R, Dunn MJ, Haynes PA, van Wijk KJ, Kikuchi S, Renaut J, Weckwerth W, Rakwal R (2011) Time to articulate a vision for the future of plant proteomics—a global perspective. An initiative for establishing the international plant proteomics organization (INPPO). Proteomics 11:1559–1568PubMedCrossRefGoogle Scholar
  6. Alonso JM, Stepanova AN (2003) T-DNA mutagenesis in Arabidopsis. Methods Mol Biol 236:177–187Google Scholar
  7. Arc E, Galland M, Cueff G, Godin B, Lounifi I, Job D, Rajjou L(2011) Reboot the system thanks to protein post-translational modifications and proteome diversity: how quiescent seeds restart their metabolism to prepare seedling establishment. Proteomics 11:1606–1618PubMedCrossRefGoogle Scholar
  8. Azevedo RA, Lancien M, Lea PJ (2006) The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino acids 30:143–162PubMedCrossRefGoogle Scholar
  9. Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M, Yalovsky S, Zimmermann P, Grossniklaus U, Gruissem W, Baginsky S (2008) Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320:938–941PubMedCrossRefGoogle Scholar
  10. Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C R Biol 331:806–814PubMedCrossRefGoogle Scholar
  11. Baroux C, Spillane C, Grossniklaus U (2002) Evolutionary origins of the endosperm in flowering plants. Genome Biol 3:10261–10265CrossRefGoogle Scholar
  12. Baud S, Lepiniec L (2009) Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis. Plant Physiol Biochem 47:448–455PubMedCrossRefGoogle Scholar
  13. Baud S, Wuilleme S, To A, Rochat C, Lepiniec L (2009) Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J 60:933–947PubMedCrossRefGoogle Scholar
  14. Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82:259–266PubMedGoogle Scholar
  15. Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627PubMedCrossRefGoogle Scholar
  16. Bennetzen JL, Ma J (2003) The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Curr Opin Plant Biol 6:128–133PubMedCrossRefGoogle Scholar
  17. Bent AF (2000) Arabidopsisin planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol 124:1540–1547PubMedCrossRefGoogle Scholar
  18. Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066PubMedCrossRefGoogle Scholar
  19. Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B 9:165–191PubMedCrossRefGoogle Scholar
  20. Bhat SP, Padayatty JD (1975) Transcriptional events during early phase of germination of rice embryo. Nature 256:227–228Google Scholar
  21. Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C, Salse J (2009) The ‘inner circle’ of the cereal genomes. Curr Opin Plant Biol 12:119–125PubMedCrossRefGoogle Scholar
  22. Bourgeois M, Jacquin F, Cassecuelle F, Savois V, Belghazi M, Aubert G, Quillien L, Huart M, Marget P, Burstin J (2011) A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition. Proteomics 11:1581–1594PubMedCrossRefGoogle Scholar
  23. Bruskiewich R, Metz T, McLaren G (2006) Bioinformatics and crop information systems in rice research. Int Rice Res Notes 31:5–12Google Scholar
  24. Candela H, Hake S (2008) The art and design of genetic screens: maize. Nat Rev Genet 9:192–203PubMedGoogle Scholar
  25. Chai G, Bai Z, Wei F, King GJ, Wang C, Shi L, Dong C, Chen H, Liu S (2010) BrassicaGLABRA2 genes: analysis of function related to seed oil content and development of functional markers. Theor Appl Genet 120:1597–1610PubMedCrossRefGoogle Scholar
  26. Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Dossat C, Sourdille P, Joudrier P, Gautier MF, Cattolico L, Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17:1033–1045PubMedCrossRefGoogle Scholar
  27. Charles D (2006) Species conservation. A ‘forever’ seed bank takes root in the Arctic. Science 312:1730–1731PubMedCrossRefGoogle Scholar
  28. Chen T, Nayak N Majee SM, Lowenson J, Schäfermeyer KR, Eliopoulos AC, Lloyd TD, Dinkins R, Perry SE, Forsthoefel NR, Clarke SG, Vernon DM, Zhou ZS, Rejtar T, Downie AB (2010b) Substrates of the Arabidopsis thaliana protein isoaspartyl methyltransferase 1 identified using phage display and biopanning. J Biol Chem 285:37281–37292CrossRefGoogle Scholar
  29. Cordain L (1999) Cereal grains: humanity’s double edged sword. In: Artemis S (ed) Evolutionary aspects of nutrition and health diet, exercise, genetics and chronic disease, vol 84. Karger, Basel, pp 19–73Google Scholar
  30. Dao TH (2003) Polyvalent cation effects on myo-inositol hexakis dihydrogenphosphate enzymatic dephosphorylation in dairy wastewater. J Environ Qual 32:694–701PubMedGoogle Scholar
  31. DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738PubMedCrossRefGoogle Scholar
  32. Devaiah SP, Pan X, Hong Y, Roth M, Welti R, Wang X (2007) Enhancing seed quality and viability by suppressing phospholipase D in Arabidopsis. Plant J 50:950–957PubMedCrossRefGoogle Scholar
  33. Droc G, Ruiz M, Larmande P, Pereira A, Piffanelli P, Morel JB, Dievart A, Courtois B, Guiderdoni E, Périn C (2006) OryGenesDB: a database for rice reverse genetics. Nucl Acids Res 34:D736–D740Google Scholar
  34. Emami K, Morris NJ, Cockell SJ, Golebiowska G, Shu QY, Gatehouse AM (2010) Changes in protein expression profiles between a low phytic acid rice (Oryza sativa L. Ssp. japonica) line and its parental line: a proteomic and bioinformatic approach. J Agric Food Chem 58:6912–6922PubMedCrossRefGoogle Scholar
  35. Ermolaeva MD, Wu M, Eisen JA, Salzberg SL (2003) The age of the Arabidopsis thaliana genome duplication. Plant Mol Biol 51:859–866PubMedCrossRefGoogle Scholar
  36. Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie AR, Galili G (2006) Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol 142:839–854PubMedCrossRefGoogle Scholar
  37. Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405PubMedCrossRefGoogle Scholar
  38. Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341PubMedCrossRefGoogle Scholar
  39. Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32PubMedCrossRefGoogle Scholar
  40. Fincher GB (1989) Molecular and cellular biology associated with endosperm mobilization in geminating cereal grain. Annu Rev Plant Physiol Plant Mol Biol 40:305–346CrossRefGoogle Scholar
  41. Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523PubMedCrossRefGoogle Scholar
  42. Finnie C, Svensson B (2009) Barley seed proteomics from spots to structures. J Proteomics 72:315–324PubMedCrossRefGoogle Scholar
  43. Fitzgerald MA, McCouch SR, Hall RD (2009) Not just a grain of rice: the quest for quality. Trends Plant Sci 14:133–139PubMedCrossRefGoogle Scholar
  44. Focks N, Benning C (1998) Wrinkled 1: a novel, low seed-soil-mutant Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118:91–101PubMedCrossRefGoogle Scholar
  45. Frohlich MW, Chase MW (2007) After a dozen years of progress the origin of angiosperms is still a great mystery. Nature 450:1184–1189PubMedCrossRefGoogle Scholar
  46. Fukuzawa K, Tokumura A, Ouchi S, Tsukatani H (1982) Antioxidant activities of tocopherols on Fe2+-ascorbate-induced lipid peroxidatoin in lecithin liposomes. Lipids 17:511–513PubMedCrossRefGoogle Scholar
  47. Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126:835–848PubMedCrossRefGoogle Scholar
  48. Gallardo K, Firnhaber C, Zuber H, Hericher D, Belghazi M, Henry C, Kuster H, Thompson RD (2007) A combined proteome and transcriptome analysis of developing Medicago truncatula seeds. Mol Cell Proteomics 6:2165–2179PubMedCrossRefGoogle Scholar
  49. Germain V, Rylott EL, Larson TR, Sherson SM, Bechtold N, Carde JP, Bryce JH, Graham IA, Smith SM (2001) Requirement for 3-ketoacyl-CoA thiolase-2 in peroxisome development, fatty acid beta-oxidation and breakdown of triacylglycerol in lipid bodies of Arabidopsis seedlings. Plant J 28:1–12Google Scholar
  50. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100Google Scholar
  51. Gutierrez L, Van Wuytswinkel O, Castelain M, Bellini C (2007) Combined networks regulating seed maturation. Trends Plant Sci 12:294–300PubMedCrossRefGoogle Scholar
  52. Hajduch M, Casteel JE, Tang S, Hearne LB, Knapp S, Thelen JJ (2007) Proteomic analysis of near-isogenic sunflower varieties differing in seed oil traits. J Proteome Res 6:3232–3241PubMedCrossRefGoogle Scholar
  53. Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11: 601–614PubMedGoogle Scholar
  54. Holdsworth MJ, Bentsink L, Soppe WJJ (2008a) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54Google Scholar
  55. Holdsworth MJ, Finch-Savage WE, Grappin P, Job D (2008b) Postgenomics dissection of seed dormancy and germination. Trends Plant Sci 13:7–13CrossRefGoogle Scholar
  56. Howell KA, Narsai R, Carroll A, Ivanova A, Lohse M, Usadel B, Millar AH, Whelan J (2009) Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process. Plant Physiol 149:961–980PubMedCrossRefGoogle Scholar
  57. Hsieh TF, Shin J, Uzawa R, Silva P, Cohen S, Bauer MJ, Hashimoto M, Kirkbride RC, Harada JJ, Zilberman D, Fischer RL (2011) Regulation of imprinted gene expression in Arabidopsis endosperm. Proc Natl Acad Sci U S A 108:1755–1762PubMedCrossRefGoogle Scholar
  58. Hurrell RF (2003) Influence of vegetable protein sources on trace element and mineral bioavailability. J Nutr 133:2973S–2977SPubMedGoogle Scholar
  59. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  60. International Rice Research Institute, World Rice Statistics (2009) http://ricestat.irri.org:8080/wrs/.Accessed 1 Oct 2012
  61. Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36:366–381Google Scholar
  62. Itoh T, Tanaka T, Barrero RA, Yamasaki C, Fujii Y, Hilton PB, Antonio BA, Aono H, Apweiler R, Bruskiewich R, Bureau T, Burr F, Costa de Oliveira A, Fuks G, Habara T, Haberer G, Han B, Harada E, Hiraki AT, Hirochika H, Hoen D, Hokari H, Hosokawa S, Hsing Y, Ikawa H, Ikeo K, Imanishi T, Ito Y, Jaiswal P, Kanno M, Kawahara Y, Kawamura T, Kawashima H, Khurana JP, Kikuchi S, Komatsu S, Koyanagi KO, Kubooka H, Lieberherr D, Lin YC, Lonsdale D, Matsumoto T, Matsuya A, McCombie WR, Messing J, Miyao A, Mulder N, Nagamura Y, Nam J, Namiki N, Numa H, Nurimoto S, O’Donovan C, Ohyanagi H, Okido T, Oota S, Osato N, Palmer LE, Quetier F, Raghuvanshi S, Saichi N, Sakai H, Sakai Y, Sakata K, Sakurai T, Sato F, Sato Y, Schoof H, Seki M, Shibata M, Shimizu Y, Shinozaki K, Shinso Y, Singh NK, Smith-White B, Takeda JI, Tanino M, Tatusova T, Thongjuea S, Todokoro F, Tsugane M, Tyagi AK, Vanavichit A, Wang A, Wing RA, Yamaguchi K, Yamamoto M, Yamamoto N, Yu Y, Zhang H, Zhao Q, Higo K, Burr B, Gojobori T, Sasaki T (2007) Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res 17:175–183Google Scholar
  63. Izawa T, Shimamoto K (1996) Becoming a model plant: the importance of rice to plant science. Trends Plant Sci 1:95–99CrossRefGoogle Scholar
  64. Jain RK, Coffey M, Lai K, Kumar A, MacKenzie SL (2000) Enhancement of seed oil content by expression of glycerol-3-phosphate acyltransferase genes. Biochem Soc Trans 28:958–961Google Scholar
  65. Jaiswal P, Ni J, Yap I, Ware D, Spooner W, Youens-Clark K, Ren L, Liang C, Zhao W, Ratnapu K, Faga B, Canaran P, Fogleman M, Hebbard C, Avraham S, Schmidt S, Casstevens TM, Buckler ES, Stein L, McCouch S (2006) Gramene: a bird’s eye view of cereal genomes. Nucl Acids Res 34:D717–D723Google Scholar
  66. Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126:861–874Google Scholar
  67. Jeon JS, Ryoo N, Hahn TR, Walia H, Nakamura Y (2010) Starch biosynthesis in cereal endosperm. Plant Physiol Biochem 48:383–392PubMedCrossRefGoogle Scholar
  68. Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 138:790–802Google Scholar
  69. Jolliffe NA, Craddock CP, Frigerio L (2005) Pathways for protein transport to seed storage vacuoles. Biochem Soc Trans 33:1016–1018PubMedCrossRefGoogle Scholar
  70. Jung KH, An G, Ronald PC (2008) Towards a better bowl of rice: assigning function to tens of thousands of rice genes. Nat Rev Genet 9:91–101PubMedGoogle Scholar
  71. Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33(1):102–106Google Scholar
  72. Kim ST, Kang SY, Wang Y, Kim SG, Hwang du H, Kang KY (2008) Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds. Proteomics 8:3577–3587PubMedCrossRefGoogle Scholar
  73. Kondou Y, Higuchi M, Takahashi S, Sakurai T, Ichikawa T, Kuroda H, Yoshizumi T, Tsumoto Y, Horii Y, Kawashima M, Hasegawa Y, Kuriyama T, Matsui K, Kusano M, Albinsky D, Takahashi H, Nakamura Y, Suzuki M, Sakakibara H, Kojima M, Akiyama K, Kurotani A, Seki M, Fujita M, Enju A, Yokotani N, Saitou T, Ashidate K, Fujimoto N, Ishikawa Y, Mori Y, Nanba R, Takata K, Uno K, Sugano S, Natsuki J, Dubouzet JG, Maeda S, Ohtake M, Mori M, Oda K, Takatsuji H, Hirochika H, Matsui M (2009) Systematic approaches to using the FOX hunting system to identify useful rice genes. Plant J 57:883–894PubMedCrossRefGoogle Scholar
  74. Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61:909–291Google Scholar
  75. Koornneef M, Hanhart CJ, Hilhorst HWM, Karssen CM (1989) In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana. Plant Physiol 90:463–469Google Scholar
  76. Krishnan HB, Natarajan SS (2009) A rapid method for depletion of rubisco from soybean (Glycine max) leaf for proteomic analysis of lower abundance proteins.Phytochemistry 70:1958–1964Google Scholar
  77. Laibach F. (1943) Arabidopsis thaliana (L.) Heynh. als object fur genetische und entwicklungsphysiologische untersuchungen. Bot Archiv 44:439–455Google Scholar
  78. Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, Drews GN, Fischer RL, Okamuro JK, Harada JJ, Goldberg RB (2010) Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci U S A 107:8063–8070Google Scholar
  79. Linkies A, Graeber K, Knight C, Leubner-Metzger G (2010) The evolution of seeds. New Phytol 186: 817–831PubMedCrossRefGoogle Scholar
  80. Martínez-Barajas E, Delatte T, Schluepmann H, de Jong GJ, Somsen GW, Nunes C, Primavesi LF, Coello P, Mitchell RA, Paul MJ (2011) Wheat grain development is characterized by remarkable trehalose 6-phosphate accumulation pregrain filling: tissue distribution and relationship to SNF1-related protein kinase1 activity. Plant Physiol 156: 373–381PubMedCrossRefGoogle Scholar
  81. McCourt P, Benning C (2010) Arabidopsis: A rich harvest 10 years after completion of the genome sequence. Plant J 61: 905–908Google Scholar
  82. Mène-Saffrané L, DellaPenna D (2010) Biosynthesis, regulation and functions of tocochromanols in plants. Plant Physiol Biochem 48:301–309PubMedCrossRefGoogle Scholar
  83. Messing J, Dooner HK (2006) Organization and variability of the maize genome. Curr Opin Plant Biol 9:157–163PubMedCrossRefGoogle Scholar
  84. Meurs C, Basra AS, Karssen CM, van Loon LC (1992) Role of abscisic acid in the induction of desiccation tolerance in developing seeds of Arabidopsis thaliana. Plant Physiol 98:1484–1493Google Scholar
  85. Miernyk JA, Hajduch M (2011) Seed proteomics. J Proteomics 74:389–400PubMedCrossRefGoogle Scholar
  86. Miller A., Engel KH (2006) Content of gamma-oryzanol and composition of steryl ferulates in brown rice (Oryza sativa L.) of European origin. J Agric Food Chem 54:8127–8133Google Scholar
  87. Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D, Higgins TJV (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc Natl Acad Sci U S A 94:8393–8398Google Scholar
  88. Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution. Grasses, line up and form a circle. Curr Biol 5:737–739Google Scholar
  89. Muller-Landau HC (2003) Seeds of understanding of plant diversity. Proc Natl Acad Sci U S A 100:1469–1471PubMedCrossRefGoogle Scholar
  90. Murthy UM, Sun WQ (2000) Protein modification by Amadori and Maillard reactions during seed storage: roles of sugar hydrolysis and lipid peroxidation. J Exp Bot 51(348):1221–1228Google Scholar
  91. Müntz K (1998) Deposition of storage proteins. Plant Mol Biol 38:77–99PubMedCrossRefGoogle Scholar
  92. Nambara E, Akazawa T, McCourt P (1991) Effects of the gibberellin biosynthetic inhibitor uniconazol on mutants of Arabidopsis. Plant Physiol 97:736–738Google Scholar
  93. North H, Baud S, Debeaujon I, Dubos C, Dubreucq B, Grappin P, Jullien M, Lepiniec L, Marion-Poll A, Miquel M, Rajjou L, Routaboul JM, Caboche M (2010) Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research. Plant J 61:971–981Google Scholar
  94. Nozoye T, Inoue H, Takahashi M, Ishimaru Y, Nakanishi H, Mori S, Nishizawa NK (2007) The expression of iron homeostasis-related genes during rice germination. Plant Mol Biol 64:35–47Google Scholar
  95. Ogé L, Bourdais G, Bove J, Collet B, Godin B, Granier F, Boutin JP, Job D, Jullien M, Grappin P (2008) Protein repair L-isoaspartyl methyltransferase 1 is involved in both seed longevity and germination vigor in Arabidopsis. Plant Cell 20:3022–3037Google Scholar
  96. Ohyanagi H, Tanaka T, Sakai H, Shigemoto Y, Yamaguchi K, Habara T, Fujii Y, Antonio BA, Nagamura Y, Imanishi T, Ikeo K, Itoh T, Gojobori T, Sasaki T (2006) The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information. Nucl Acids Res 34:D741–D744Google Scholar
  97. O’Neill CM, Gill S, Hobbs D, Morgan C, Bancroft I (2003) Natural variation for seed oil composition in Arabidopsis thaliana. Phytochemistry 64:1077–1090Google Scholar
  98. Ooms JJJ, Léon-Kloosterziel KM, Bartels D, Koornneef M, Karssen CM (1993) Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana (A comparative study using abscisic acid-intensive abi3 mutants). Plant Physiol 102:1185–1191Google Scholar
  99. Opanowicz M, Vain P, Draper J, Parker D, Doonan JH (2008) Brachypodium distachyon: making hay with a wild grass. Trends Plant Sci 13:172–177Google Scholar
  100. Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR rice genome annotation resource: improvements and new features. Nucl Acids Res 35:D883–D887Google Scholar
  101. Pinfield-Wells H, Rylott EL, Gilday AD, Graham S, Job K, Larson TR, Graham IA (2005) Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism. Plant J 43:861–872Google Scholar
  102. Prieto-Dapena P, Castaño R, Almoguera C, Jordano J (2006) Improved resistance to controlled deterioration in transgenic seeds. Plant Physiol 142:1102–1112PubMedCrossRefGoogle Scholar
  103. Rabinowicz PD, Bennetzen JL (2006) The maize genome as a model for efficient sequence analysis of large plant genomes. Curr Opin Plant Biol 9:149–156PubMedCrossRefGoogle Scholar
  104. Rajjou L, Debeaujon I (2008) Seed longevity: survival and maintenance of high germination ability of dry seeds. C R Biologies 331:796–805PubMedCrossRefGoogle Scholar
  105. Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141:910–923Google Scholar
  106. Rajjou L, Lovigny Y, Groot SPC, Belghazi M, Job C, Job D (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 148:620–641Google Scholar
  107. Rakwal R, Agrawal GK (2003) Rice proteomics: current status and future perspectives. Electrophoresis 24:3378–3389PubMedCrossRefGoogle Scholar
  108. Reissner KJ, Aswad DW (2003) Deamidation and isoaspartate formation in proteins: unwanted alterations or surreptitious signals? Cell Mol Life Sci 60:1281–1295Google Scholar
  109. Rensink WA, Buell CR (2004) Arabidopsis to rice. Applying knowledge from a weed to enhance our understanding of a crop species. Plant Physiol 135:622–629PubMedCrossRefGoogle Scholar
  110. Sasaki T, Burr B (2000) International Rice Genome Sequencing Project: the effort to completely sequence the rice genome. Curr Opin Plant Biol 3:138–141PubMedCrossRefGoogle Scholar
  111. Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16:1419–1432PubMedCrossRefGoogle Scholar
  112. Sattler SE, Mène-Saffrané L, Farmer EE, Krischke M, Mueller MJ, DellaPenna D (2006) Nonenzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants. Plant Cell 18:3706–3720Google Scholar
  113. Schneider C (2005) Chemistry and biology of vitamin E. Mol Nutr Food Res 49:7–30PubMedCrossRefGoogle Scholar
  114. Shen B, Sinkevicius KW, Selinger DA, Tarczynski MC (2006) The homeobox gene GLABRA2 affects seed oil content in Arabidopsis. Plant Mol Biol 60:377–387Google Scholar
  115. Shimamoto K, Kyozuka J (2002) Rice as a model for comparative genomics of plants. Annu Rev Plant Biol 53:399–419PubMedCrossRefGoogle Scholar
  116. Shin JH, Kim SR, An G (2009) Rice aldehyde dehydrogenase 7 is needed for seed maturation and viability. Plant Physiol 149:905–915Google Scholar
  117. Somerville C, Koornneef M (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 3:883–889PubMedCrossRefGoogle Scholar
  118. Sreenivasulu N, Graner A, Wobus U (2008a) Barley genomics: an overview. Int J Plant Genomics 2008: 486258Google Scholar
  119. Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein N, Weschke W, Strickert M, Close TJ, Stitt M, Graner A, Wobus U (2008b) Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol 146:1738–1758CrossRefGoogle Scholar
  120. Sreenivasulu N, Borisjuk L, Junker BH, Mock HP, Rolletschek H, Seiffert U, Weschke W, Wobus U (2010) Barley grain development: toward an integrative view. Int Rev Cell Mol Biol 281:49–89PubMedCrossRefGoogle Scholar
  121. Sung HG, Shin HT, Ha JK, Lai HL, Cheng KJ, Lee JH (2005) Effect of germination temperature on characteristics of phytase production from barley. Bioresour Technol 96:1297–1303PubMedCrossRefGoogle Scholar
  122. Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280Google Scholar
  123. Talon M, Koornneef M, Zeevaart JA (1990) Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants. Proc Natl Acad Sci U S A 87:7983–7987Google Scholar
  124. Tanaka T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y, Numa H, Sakai H, Wu J, Itoh T, Sasaki T, Aono R, Fujii Y, Habara T, Harada E, Kanno M, Kawahara Y, Kawashima H, Kubooka H, Matsuya A, Nakaoka H, Saichi N, Sanbonmatsu R, Sato Y, Shinso Y, Suzuki M, Takeda JI, Tanino M, Todokoro F, Yamaguchi K, Yamamoto N, Yamasaki C, Imanishi T, Okido T, Tada M, Ikeo K, Tateno Y, Gojobori T, Lin YC, Wei FJ, Hsing YI, Zhao Q, Han B, Kramer MR, McCombie RW, Lonsdale D, O’Donovan CC, Whitfield EJ, Apweiler R, Koyanagi KO, Khurana JP, Raghuvanshi S, Singh NK, Tyagi AK, Haberer G, Fujisawa M, Hosokawa S, Ito Y, Ikawa H, Shibata M, Yamamoto M, Bruskiewich RM, Hoen DR, Bureau TE, Namiki N, Ohyanagi H, Sakai Y, Nobushima S, Sakata K, Barrero RA, Sato Y, Souvorov A, Smith-White B, Tatusova T, An S, An G, OOta S, Fuks G, Messing J, Christie KR, Lieberherr D, Kim H, Zuccolo A, Wing RA, Nobuta K, Green PJ, Lu C, Meyers BC, Chaparro C, Piegu B, Panaud O, Echeverria M (2008) The rice annotation project database (RAP-DB): 2008 update. Nucl Acids Res. 36:D1028–D1033Google Scholar
  125. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815Google Scholar
  126. The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768Google Scholar
  127. Tranbarger TJ, Dussert S, Joët T, Argout X, Summo M, Champion A, Cros D, Omore A, Nouy B, Morcillo F (2011) Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism. Plant Physiol 156:564–584PubMedCrossRefGoogle Scholar
  128. Tresset A, Vigne JD (2011) Last hunter-gatherers and first farmers of Europe. C R Biol 334:182–189PubMedCrossRefGoogle Scholar
  129. Trisiriroj A, Jeyachok N, Chen ST (2004) Proteomics characterization of different bran proteins between aromatic and nonaromatic rice (Oryza sativa L. ssp. indica). Proteomics 4:2047–2057Google Scholar
  130. Troncoso-Ponce MA, Kruger NJ, Ratcliffe G, Garcés R, Martínez-Force E (2009) Characterization of glycolytic initial metabolites and enzyme activities in developing sunflower (Helianthus annuus L.) seeds. Phytochemistry 70:1117–1122Google Scholar
  131. Valentine L (2003) Agrobacterium tumefaciens and the plant: the David and Goliath of modern genetics. Plant Physiol 133:948–955PubMedCrossRefGoogle Scholar
  132. Vensel WH, Tanaka CK, Cai N, Wong JH, Buchanan BB, Hurkman WJ (2005) Developmental changes in the metabolic protein profiles of wheat endosperm. Proteomics 5:1594–1611PubMedCrossRefGoogle Scholar
  133. Venu RC, Sreerekha MV, Nobuta K, Belo A, Ning Y, An G, Meyers BC, Wang GL (2011) Deep sequencing reveals the complex and coordinated transcriptional regulation of genes related to grain quality in rice cultivars. BMC Genomics 12:190PubMedCrossRefGoogle Scholar
  134. Vigeolas H, Waldeck P, Zank T, Geigenberger P (2007) Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol J 5:431–441Google Scholar
  135. Waddell J (1958) Supplementation of plant proteins with amino acids. In: Altschul AM (ed) Processed plant protein foodstuffs. Academic, New York, pp 307–351Google Scholar
  136. Wan Y, Underwood C, Toole G, Skeggs P, Zhu T, Leverington M, Griffiths S, Wheeler T, Gooding M, Poole R, Edwards KJ, Gezan S, Welham S, Snape J, Mills EN, Mitchell RA, Shewry PR (2009) A novel transcriptomic approach to identify candidate genes for grain quality traits in wheat. Plant Biotechnol J 7:401–410PubMedCrossRefGoogle Scholar
  137. Ware DH, Jaiswal P, Ni J, Yap IV, Pan X, Clark KY, Teytelman L, Schmidt SC, Zhao W, Chang K, Cartinhour S, Stein LD, McCouch SR (2002) Gramene, a tool for grass genomics. Plant Physiol 130:1606–1613PubMedCrossRefGoogle Scholar
  138. Waterworth WM, Masnavi G, Bhardwaj RM, Jiang Q, Bray CM, West CE (2010) A plant DNA ligase is an important determinant of seed longevity. Plant J 63:848–860PubMedCrossRefGoogle Scholar
  139. Weitbrecht K, Müller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62:3289–3309PubMedCrossRefGoogle Scholar
  140. Xu XH, Zhao HJ, Liu QL, Frank T, Engel KH, An G, Shu QY (2009) Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Theor Appl Genet 119:75–83PubMedCrossRefGoogle Scholar
  141. Yamada C, Izumi H, Hirano J, Mizukuchi A, Kise M, Matsuda T, Kato Y (2005) Degradation of soluble proteins including some allergens in brown rice grains by endogenous proteolytic activity during germination and heat-processing. Biosci Biotechnol Biochem 69:1877–1883PubMedCrossRefGoogle Scholar
  142. Yamaguchi S, Kamiya Y, Sun T (2001) Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. Plant J 28:443–453Google Scholar
  143. Yamakawa H, Hirose T, Kuroda M, Yamaguchi T (2007) Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol 144:258–277PubMedCrossRefGoogle Scholar
  144. Yang P, Li X, Wang X, Chen H, Chen F, Shen S (2007) Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 7:3358–3368Google Scholar
  145. Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C, Zhang J, Zhang Y, Li R, Xu Z, Li S, Li X, Zheng H, Cong L, Lin L, Yin J, Geng J, Li G, Shi J, Liu J, Lv H, Li J, Wang J, Deng Y, Ran L, Shi X, Wang X, Wu Q, Li C, Ren X, Wang J, Wang X, Li D, Liu D, Zhang X, Ji Z, Zhao W, Sun Y, Zhang Z, Bao J, Han Y, Dong L, Ji J, Chen P, Wu S, Liu J, Xiao Y, Bu D, Tan J, Yang L, Ye C, Zhang J, Xu J, Zhou Y, Yu Y, Zhang B, Zhuang S, Wei H, Liu B, Lei M, Yu H, Li Y, Xu H, Wei S, He X, Fang L, Zhang Z, Zhang Y, Huang X, Su Z, Tong W, Li J, Tong Z, Li S, Ye J, Wang L, Fang L, Lei T, Chen C, Chen H, Xu Z, Li H, Huang H, Zhang F, Xu H, Li N, Zhao C, Li S, Dong L, Huang Y, Li L, Xi Y, Qi Q, Li W, Zhang B, Hu W, Zhang Y, Tian X, Jiao Y, Liang X, Jin J, Gao L, Zheng W, Hao B, Liu S, Wang W, Yuan L, Cao M, McDermott J, Samudrala R, Wang J, Wong GKS, Yang H (2005) The Genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38PubMedCrossRefGoogle Scholar
  146. Yuan Q, Ouyang S, Liu J, Suh B, Cheung F, Sultana R, Lee D, Quackenbush J, Buell CR (2003) The TIGR rice genome annotation resource: annotating the rice genome and creating resources for plant biologists. Nucl Acids Res 31:229–233PubMedCrossRefGoogle Scholar
  147. Zhang J, Li C, Wu C, Xiong L, Chen G, Zhang Q, Wang S (2006) RMD: a rice mutant database for functional analysis of the rice genome. Nucl Acids Res 34:D745–D748Google Scholar
  148. Zou J, Katavic V, Giblin EM, Barton DL, MacKenzi SL, Keller WA, Hu X, Taylor DC (1997) Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9:909–923PubMedCrossRefGoogle Scholar
  149. Zupan JR, Zambryski P (1995) Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol 107:1041–1047PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Marc Galland
    • 1
    • 2
    Email author
  • Imen Lounifi
    • 1
    • 2
  • Gwendal Cueff
    • 1
    • 2
  • Aurélie Baldy
    • 1
  • Halima Morin
    • 1
  • Dominique Job
    • 2
    • 3
  • Loïc Rajjou
    • 1
    • 2
  1. 1.Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, INRA-Agro Paris Tech, team “Physiology of Seed Germination”INRA Centre de Versailles-GrignonVersailles CedexFrance
  2. 2.Agro Paris TechUnité de Formation et de Recherche de Physiologie VégétaleParis Cedex 05France
  3. 3.Unité Mixte de Recherche 5240CNRS-Université Claude Bernard Lyon-Institut National des Sciences Appliquées-Bayer Crop Science, Bayer Crop Science, Centre de Recherche de La DargoireLyon Cedex 9France

Personalised recommendations