Skip to main content

Metabolomics-Assisted Crop Breeding Towards Improvement in Seed Quality and Yield

  • Chapter
  • First Online:
Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield

Abstract

Seed complex traits, such as oil, protein or starch content, but also seed size, vigor, and dormancy represent agronomic traits of value. The exact understanding of their underlying regulatory mechanisms may be central to the development of future crop cultivars and goal orientated breeding strategies, sustaining high yields, seed nutritional quality or increased oil content. Seed traits are inherently associated with seed metabolism and plant-seed carbon-nitrogen allocation, thus a metabolomics based approach can provide a comprehensive understanding of seed metabolism and more generally of seed quality. During its different developmental stages and from the maturation phase to germination, the seed is characterized by distinct metabolite signatures, which may associate to yield related traits, rendering their identification useful as metabolic markers in the development of metabolomics-assisted breeding strategies. That said, the scientific knowledge on biochemical pathways in a cell is limited by the small number of identifiable metabolites (few hundreds) as compared to the thousands present at any given moment in a cell. Moreover, the integration of different metabolomics platforms allowing the identification and quantification of known and unknown metabolites remains a non-trivial step in deciphering complete metabolomes. Last, the superimposition of metabolite data and morpho-physiological traits requires correct data handling and elaboration. Without requiring a prior knowledge of biochemical reactions, correlation based network analysis represents an attractive approach to study the mode of interaction of known metabolites, to suggest unknown candidates for pathway elucidation and to identify association between metabolites and yield related traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The use of the adjectives ‘primary’ and ‘secondary’ to categorize classes of metabolic processes is at times confusing. Primary or central metabolism is considered as being constitutively active. Examples of central metabolic processes are glycolysis, TCA cycle, OPPP, amino acid biosynthesis. In contrast, secondary or specialized metabolism is likely induced by exogenous and endogenous cues. Alternatively, metabolites actively integrated into biochemical pathways are referred to as primary metabolites, whereas the class of secondary metabolites does not have an immediate functionality in the pathways themselves, but often possesses important ecological functions. That said, groups as FAs as well as certain polyamines and nonprotein amino acids can correspond to both categories rendering classification artificial if not misleading. Here, we will adopt the use of central and specialized metabolism rather than primary and secondary.

  2. 2.

    Metabolites are defined as quantitative traits (QT) implying the quantitative continuous change in their content across a population.

  3. 3.

    A metabolon is a temporary structural-functional complex formed between sequential enzymes of a metabolic pathway, held together by noncovalent interactions (Srere 1985).

  4. 4.

    Defined as the emergence of the radicle from the seed testa (Baskin and Baskin 2004; Finch-Savage and Leubner-Metzger 2006).

  5. 5.

    Orthodox seeds are desiccation tolerant and storable under dry states for long periods of time (Angelovici et al. 2010).

  6. 6.

    Seeds that fail to go through storage-like periods, such as dry chilling; hence the term “recalcitrant” to storage (Roberts 1973).

References

  • Agrawal GK, Hajduch M, Graham K, Thelen JJ (2008) In-depth investigation of the soybean seed-filling proteome and comparison with a parallel study of rapeseed. Plant Physiol 148:504–518

    Article  PubMed  CAS  Google Scholar 

  • Aharoni A, Galili G (2011) Metabolic engineering of the plant primary-secondary metabolism interface. Curr Opin Biotechnol 22:239–244

    Article  PubMed  CAS  Google Scholar 

  • Akama K, Kanetou J, Shimosaki S, Kawakami K, Tsuchikura S, Takaiwa F (2009) Seed-specific expression of truncated OsGAD2 produces GABA-enriched rice grains that influence a decrease in blood pressure in spontaneously hypertensive rats. Transgenic Res 18:865–876

    Article  PubMed  CAS  Google Scholar 

  • Allwood JW, Erband A, de Koning S, Dunn WB, Luedemann A, Lommen A, Kay L, Löscher R, Kopka J, Goodacre R (2009) Inter-laboratory reproducibility of fast chromatography-electron impact-time of flight mass spectrometry (GC-EI-TOF/MS) based plant metabolomics. Metabolomics 5:479–496

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Blanco C, Bentsink L, Hanhart CJ, Vries HBE, Koornneef M (2003) Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164:711–729

    Google Scholar 

  • Angelovici R, Fait A, Zhu X, Szymanski J, Feldmesser E, Fernie AR, Galili G (2009) Deciphering transcriptional and metabolic networks associated with lysine metabolism during Arabidopsis seed development. Plant Physiol 151:2058–2072

    Article  PubMed  CAS  Google Scholar 

  • Angelovici R, Galili G, Fernie AR, Fait A (2010) Seed desiccation: a bridge between maturation and germination. Trends Plant Sci 15:211–218

    Article  PubMed  CAS  Google Scholar 

  • Angelovici R, Fait A, Fernie AR, Galili G (2011) A seed high-lysine trait is negatively associated with the TCA cycle and slows down Arabidopsis seed germination. New Phytol 189:148–159

    Article  PubMed  CAS  Google Scholar 

  • Bailly C, Audigier C, Ladonne F, Wagner MH, Coste F, Corbineau F, Côme D (2001) Changes in oligosaccharides content and antioxidant enzyme activities in developing bean seeds as related to acquisition do drying tolerance and seed quality. J Exp Bot 52:701–708

    PubMed  CAS  Google Scholar 

  • Bartlem D, Lambein I, Okamoto D, Itaya A, Uda Y, Kijima F, Tamaki Y, Nambara E, Naito S (2000) Mutation in the threonine synthase gene results in an over-accumulation of soluble methionine in Arabidopsis. Plant Physiol 123:101–110

    Article  PubMed  CAS  Google Scholar 

  • Baskin CC, Baskin JM (1998) Seeds: ecology, biography, and evolution of dormancy and germination. In: Baskin CC, Baskin JM (eds). Academic, San Francisco, pp 666

    Google Scholar 

  • Bedair M, Sumner LW (2008) Current and emerging mass-spectrometry technologies for metabolomics. Trends Anal Chem 27:238–250

    Article  CAS  Google Scholar 

  • Bentsink L, Hanson J, Hanhart CJ, Blankestijn-de Vries H, Coltrane C, Keizer P, El-Lithy M, Alonso-Blanco C, de Andres MT, Reymond M, van Eeuwijk F, Smeekens S, Koornneef M (2010) Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic molecular pathways. Proc Natl Acad Sci U S A 107:4264–4269

    Article  PubMed  CAS  Google Scholar 

  • Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci U S A 103:17042–17047

    Article  PubMed  CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  PubMed  CAS  Google Scholar 

  • Black M, Corbineau F, Grzesik M, Guy P, Come D (1996) Carbohydrate metabolism in the developing and maturing wheat embryo in relation to its desiccation tolerance. J Exp Bot 47:161–169

    Google Scholar 

  • Blackman SA, Obendorf RL, Leopold AC (1992) Maturation proteins and sugar in desiccation tolerance of developing soybean seeds. Plant Physiol 100:225–230

    Article  PubMed  CAS  Google Scholar 

  • Borisjuk L, Rolletschek H, Radchuk R, Weschke W, Wobus U, Weber H (2004) Seed development and differentiation: a role for metabolic regulation. Plant Biol 6:375–386

    Article  PubMed  CAS  Google Scholar 

  • Bothwell JHF, Griffin JL (2011) An introduction to biological nuclear magnetic resonance spectroscopy. Biol Rev 86:493–510

    Article  PubMed  Google Scholar 

  • Buitink J, Leprince O (2008) Intracellular glasses and seed survival in the dry state. CR Biol 331:788–795

    Article  CAS  Google Scholar 

  • Carrari F, Urbanczyk-Wochniak E, Willmitzer L, Fernie AR (2003) Engineering central metabolism in crop species: learning the system. Metab Eng 5:191–200

    Article  PubMed  CAS  Google Scholar 

  • Carrari F, Baxter C, Usadel B, Urbanczyk-Wochniak E, Zanor MI, Nunes-Nesi A, Nikiforova V, Centero D, Ratzka A, Pauly M, Sweetlove LJ, Fernie AR (2006) Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol 142:1380–1396

    Article  PubMed  CAS  Google Scholar 

  • Chander S, Guo YQ, Yang XH, Yan JB. Zhang YR, Song TM, Li JS (2008) Genetic dissection of tocopherol content and composition in maize grain using quantitative trait loci analysis and the candidate gene approach. Mol Breeding 22:353–365

    Article  CAS  Google Scholar 

  • Corbineau F, Picard MA, Fougereoux JA, Ladonne F, Côme D (2000) Effects of dehydration conditions on desiccation tolerance of developing pea seeds as related to oligosaccharide content and cell membrane properties. Seed Sci Res 10:329–339

    CAS  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    Article  PubMed  CAS  Google Scholar 

  • De Smet I, Lau S, Mayer U, Jürgens G (2010) Embryogenesis—the humble beginnings of plant life. Plant J 61:959–970

    Article  PubMed  CAS  Google Scholar 

  • Diers BW, Keim P, Fehr WR, Schoemaker RC (1992) RFLP analysis of soybean seed protein and oil content. Theo Appl Genet 83:608–612

    Article  Google Scholar 

  • Donohue K, Dorn L, Griffith C, Kim E, Aguilera A, Polisetty CR, Schmitt J (2005) The evolutionary ecology of seed germination of Arabidopsis thaliana: variable natural selection on germination timing. Evolution 59:758–770

    PubMed  Google Scholar 

  • Drew SW, Demain AL (1977) Effect of primary metabolites on secondary metabolism. Annu Rev Microbiol 31:343–356

    Article  PubMed  CAS  Google Scholar 

  • Elmqvist T, Cox PA (1996) The evolution of vivipary in flowering plants. Oikos 77:3–9

    Article  Google Scholar 

  • Erban A, Schauer N, Fernie AR, Kopka J (2007) Nonsupervised construction and application of mass spectral and retention time index libraries from time-of-flight gas chromatography-mass spectrometry metabolite profiles. Methods Mol Biol 385:19–38

    Article  Google Scholar 

  • Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie AR, Galili G (2006) Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol 142:839–854

    Article  PubMed  CAS  Google Scholar 

  • Fait A, Hanhineva K, Beleggia R, Dai N, Rogachev I, Nikiforova VJ, Fernie AR, Aharoni A (2008) Reconfiguration of the achene and receptacle networks during strawberry fruit development. Plant Physiol 148:730–750

    Article  PubMed  CAS  Google Scholar 

  • Fait A, Nesi AN, Angelovici R, Lehmann M, Pham PA, Song L, Haslam RP, Napier JA, Galili G, Fernie AR (2011) Targeted enhancement of glumate to g-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner. Plant Physiol 157:1026–1042

    Article  PubMed  CAS  Google Scholar 

  • Farnsworth EJ (2000) The ecology and physiology of viviparous and recalcitrant seeds. Annu Rev Ecol Syst 31:107–138

    Article  Google Scholar 

  • Farnsworth EJ, Farrant JM (1998) Reductions in abscisic acid are linked with viviparous reproduction in mangroves. Am J Bot 85:760–769

    Article  PubMed  CAS  Google Scholar 

  • Fernie AR, Schauer N (2009) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25:39–48

    Article  PubMed  CAS  Google Scholar 

  • Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763–769

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genom 2:155–168

    Article  CAS  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  PubMed  CAS  Google Scholar 

  • Finch-Savage WE, Clay HA, Lynn JR, Morris K (2010) Towards a genetic understanding of seed vigour in small-seeded crops using natural variation in Brassica oleracea. Plant Sci 179:582–589

    Article  CAS  Google Scholar 

  • Finkelstein RR, Gibson SI (2002) ABA and sugar interactions regulating development: cross-talk or voices in a crowd? Curr Opin Plant Biol 5:26–32

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    Google Scholar 

  • Focks N, Benning C (1998) Wrinkled 1: a novel, low seed-soil-mutant Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118:91–101

    Article  PubMed  CAS  Google Scholar 

  • Gallardo K, Firnhaber C, Zuber H, Hericher D, Belghazi M, Henry C, Kuster H, Thompson RD (2007) A combined proteome and transcriptome analysis of developing Medicago truncatula seeds. Mol Cell Proteomics 6:2165–2179

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Alcalde F, Garcia-Lopez F, Dopazo J, Conesa A (2011) Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data. Bioinformatics 27:137–139

    Article  PubMed  CAS  Google Scholar 

  • Gibson SI (2004) Sugar and phytohormone response pathways: navigating a signalling network. J Exp Bot 55:253–264

    Article  PubMed  CAS  Google Scholar 

  • Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8:93–102

    Article  PubMed  CAS  Google Scholar 

  • Gonda I, Bar E, Portnoy V, Lev S, Burger J, Schaffer AA, Tadmor Y, Gepstein S, Giovannoni JJ, Katzir N, Lewinsohn E (2010) Branched-chain and aromatic amino acid catabolism into aroma volatules in Cucumis melo L. fruit. J Exp Bot 61:1111–1123

    Article  PubMed  CAS  Google Scholar 

  • Graham IA (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59:115–142

    Article  PubMed  CAS  Google Scholar 

  • Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK (2008a) Metabolomics of temperature stress. Physiol Plant 132:220–235

    CAS  Google Scholar 

  • Guy C, Kopka J, Moritz T (2008b) Plant metabolomics coming of age. Physiol Plant 132:113–116

    Article  CAS  Google Scholar 

  • Haiyan L, Huancheng L, Yingpeng H, Xiaoxia W, Weili T, Guifeng L, Winben L (2010) Identification of QTL underlying vitamin E contents in soybean seed among multiple environments. Theor Appl Gen 120:1405–1413

    Article  CAS  Google Scholar 

  • Hajduch M, Ganapathy A, Stein JW, Thelen JJ (2005) A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol 137:1397–1419

    Article  PubMed  CAS  Google Scholar 

  • Halket JM, Waterman D, Przyborowska AM, Patel RKP, Fraser PD, Bramley PM (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 56:219–243

    Article  PubMed  CAS  Google Scholar 

  • Harrigan GG, Martino-Catt S, Glenn KC (2007a) Metabolomics, metabolic diversity and genetic variation in crops. Metabolomics 3:259–272

    Article  CAS  Google Scholar 

  • Harrigan GG, Stork LG, Riordan SG, Reynolds TL, Ridley WP, Masucci JD, MacIsaac S, Halls SC, Orth R, Smith RG, Wen L, Brown WE, Welsch M, Riley R, McFarland D, Pandravada A, Glenn KC (2007b) Impact of genetics and environment on nutritional and metabolite components of maize grain. J Agric Food Chem 55:6177–6185

    Article  CAS  Google Scholar 

  • Helmstaedt K, Krappmann S, Braus GH (2001) Allosteric regulation of catalytic activity: Escherichia coli aspartate transcarbamoylase versus yeast chorismatemutase. Microbiol Mol Biol R 65:404–421

    Article  CAS  Google Scholar 

  • Hernández-Sebastià C, Marsolais F, Saravitz C, Israel D, Dewey RE, Huber SC (2005) Free amino acid profiles suggest a possible role for asparagine in the control of storage-product accumulation in developing seeds of low- and high-protein soybean lines. J Exp Bot 56:1951–1963

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra FA, Haigh AM, Tetteroo FAA, van Roekel T (1994) Changes in soluble sugars in relation to desiccation tolerance in cauliflower seeds. Seed Sci Res 4:143–147

    Article  CAS  Google Scholar 

  • Houston NL, Hajduch M, Thelen JJ (2009) Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism. Plant Physiol 151:857–868

    Article  PubMed  CAS  Google Scholar 

  • Hsieh K, Huang AHC (2004) Endoplasmatic reticulum, oleosins, and oils in seeds and tapetum cells. Plant Physiol 136:3427–3434

    Article  PubMed  CAS  Google Scholar 

  • Hudson AO, Singh BK, Leustek T, Gilvarg C (2006) An LL-diaminopimelate aminotransferase defines a novel variant of the lysine biosynthesis pathway in plants. Plant Physiol 140:292–301

    Article  PubMed  CAS  Google Scholar 

  • Hummel J, Strehmel N, Selbig J, Walther D, Kopka J (2010) Decision tree supported substructure prediction of metabolite from GC-MS profiles. Metabolomics 6:322–333

    Article  PubMed  CAS  Google Scholar 

  • Ishihara A, Matsuda F, Miyagawa H, Wakasa K (2007) Metabolomics for metabolically manipulated plants: effects of tryptophan overproduction. Metabolomics 3:319–334

    Article  CAS  Google Scholar 

  • Jander G, Norris SR, Joshi V, Fraga M, Rugg A, Yu S, Li L, Last RL (2004) Application of a high-throughput HPLC-MS/MS assay to Arabidopsis mutant screening; evidence that threonine aldolase plays a role in seed nutritional quality. Plant J 39:465–475

    Article  PubMed  CAS  Google Scholar 

  • Jellum E (1977) Profiling of human body fluids in healthy and diseased states of using gas chromatography and mass spectrometry, with special reference to organic acids. J Chromatogr 143:427–462

    Article  PubMed  CAS  Google Scholar 

  • Joshi V, Laubengayer KM, Schauer N, Fernie AR, Jander G (2006) Two Arabidopsis threonine aldoases are nonredundant and compete with threonine deaminase for a common substrate pool. Plant Cell 18:3564–3575

    Article  PubMed  CAS  Google Scholar 

  • Kermode AR (1990) Regulatory mechanisms involved in the transition from seed development to germination. Crit Rev Plant Sci 9:155–195

    Article  CAS  Google Scholar 

  • Keurentjes JJB (2009) Genetical metabolomics: closing in on phenotypes. Curr Opin Plant Biol 12:223–230

    Article  PubMed  CAS  Google Scholar 

  • Keurentjes JJB, Fu J, de Vos CHR, Lommen A, Hall RD, Bino RJ, Van Der Plas LHW, Jansen RC, Vreugdenhil D, Koornneef M (2006) The genetics of plant metabolism. Nat Genet 38:842–849

    Article  PubMed  CAS  Google Scholar 

  • Keurentjes JJB, Sulpice R, Gibon Y, Steinhauser MC, Fu J, Koornneef M, Stitt M, Vreugdenhil D (2008) Integrative analysis of genetic variation in enzyme activities of primary carbohydrate metabolism reveal distinct modes of regulation in Arabidopsis thaliana. Genome Biol 9:r129

    Google Scholar 

  • Kimura M, Nambara E (2010) Stored and noesynthesized mRNA in Arabidopsis seeds: effect of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibition. Plant Mol Biol 73:119–129

    Article  PubMed  CAS  Google Scholar 

  • Kind T, Scholz M, Fiehn O (2009) How large is the metabolome? A critical analysis of data exchange practices in chemistry. PLoS One 4:e5440

    Google Scholar 

  • Koornneef M, Leon-Kloosterziel KM, Schwartz SH, Zeevart JAD (1998) The genetic and molecular dissection of abscisic biosynthesis and signal transduction in Arabidopsis. Plant Physiol Biochem 36:83–89

    Article  CAS  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    Article  PubMed  CAS  Google Scholar 

  • Kottapalli KR, Payton P, Rakwal R, Agrawal GK, Shibato J, Burow M, Puppala N (2008) Proteomics analysis of mature seed of four peanut cultivars using two-dimensional gel electrophoresis reveals distinct differential expression of storage, anti-nutritional, and allergenic proteins. Plant Sci 175:321–329

    Article  CAS  Google Scholar 

  • Kusano M, Fukushima A, Kobayashi M, Hayashi N, Jonsson P, Moritz T, Ebana K, Saito K (2007) Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice. J Chromatogr B 855:71–79

    Article  CAS  Google Scholar 

  • Leon P, Sheen J (2003) Sugar and hormone connections. Trends Plant Sci 8:110–116

    Article  PubMed  CAS  Google Scholar 

  • Leprince O, Bronchart R, Deltour R (1990) Changes in starch and soluble sugars in relation to the acquisition of desiccation tolerance during maturation of Brassica campestris seed. Plant Cell Environ 13:539–546

    Article  CAS  Google Scholar 

  • Less H, Galili G (2009) Coordinations between gene modules control the operation plant amino acid metabolic networks. BMC Sys Biol 3:14

    Article  CAS  Google Scholar 

  • Lippman ZB, Semel Y, Zamir D (2007) An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev 17:545–552

    Article  PubMed  CAS  Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Prot 1:387–396

    Article  CAS  Google Scholar 

  • Lisec J, Meyer RC, Steinfath M, Redestig H, Becher M, Witucka-Wall H, Fiehn O, Törjek O, Selbig J, Altmann T, Willmitzer L (2008) Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations. Plant J 53:960–972

    Article  PubMed  CAS  Google Scholar 

  • Lu W, Clasquin MF, Melamud E, Amador-Noguez D, Caudy AA, Rabinowitz JD (2010) Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer. Anal Chem 82:3212–3221

    Article  PubMed  CAS  Google Scholar 

  • Luedemann A, Strassburg K, Erban A, Kopka J (2008) TagFinder for the quantitative analysis of gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics 24:732–737

    Article  PubMed  CAS  Google Scholar 

  • Manz B, Muller K, Kuzera B, Volke F, Leubner-Metzger G (2005) Water uptake and distribution in germinating tobacco seeds investigated in vivo by nuclear magnetic resonance imaging. Plant Physiol 138:1538–1551

    Article  PubMed  CAS  Google Scholar 

  • Martin RC, Pluskota WE, Nonogaki H (2010) Seed germination. In: Pua EC, Davey MR (eds) Plant developmental biology—biotechnological perspectives, vol 1. Springer, Berlin, pp 383–404

    Chapter  Google Scholar 

  • Matsuda F, Miyazawa H, Wakasa K, Miyagawa H (2005) Quantification of indole-3-acetic acid and amino acid conjugates in rice by liquid chromatography-electrospray ionization-tandem mass spectrometry. Biosci Biotech Bioch 69:778–783

    Article  CAS  Google Scholar 

  • Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kurse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The metabolome of chlamydomonas reinhardtii following induction of anaerobic H-2 production by sulfur depletion. J Biol Chem 284:23415–23425

    Article  PubMed  CAS  Google Scholar 

  • Mazur B, Krebbers E, Tingey S (1999) Gene discovery and product development for grain quality traits. Science 285:372–375

    Article  PubMed  CAS  Google Scholar 

  • Meiler J, Will M (2002) Genius: a genetic algorithm for automated structure elucidation from 13C NMR spectra. J Am Chem Soc 124:1868–1870

    Article  PubMed  CAS  Google Scholar 

  • Messerli G, Nia VP, Trevisian M, Kolbe A, Schauer N, Geigenberger P, Chen J, Davison AC, Fernie AR, Zeeman SC (2007) Rapid classification of phenotypic mutants of Arabidopsisvia metabolite fingerprinting. Plant Physiol 143:1484–1492

    Article  PubMed  CAS  Google Scholar 

  • Meyer RC, Steinfath M, Lisec J, Becher M, Witucka-Wall H, Törjek O, Fiehn O, Eckardt Ä, Willmitzer L, Selbig J, Altmann T (2007) The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci U S A 104:4759–4764

    Article  PubMed  CAS  Google Scholar 

  • Moing A, Aharoni A, Biais B, Rogachev I, Meir S, Brodsky L, Allwood JW, Erban A, Dunn WB, Kay L, de Koning S, de Vos RCH, Jonker H, Mumm R, Deborde C, Maucourt M, Bernillon S, Gibon Y, Hansen TH, Husted S, Goodacre R, Kopka J, Schjoerring JK, Rolin D, Hall RD (2011) Extensive metabolic cross-talk in melon fruit revealed by spatial and developmental combinatorial metabolomics. New Phytol 190:683–696

    Article  PubMed  CAS  Google Scholar 

  • Mooney BP, Miernyk JA, Randall DD (2002) The complex fate of alpha-ketoacids. Annu Rev Plant Biol 53:357–375

    Article  PubMed  CAS  Google Scholar 

  • Moose SP, Dudley JW, Rocheford TR (2004) Maize selection passes the century mark: a unique resource for 21st century genomics. Trends Plant Sci 9:358–364

    Article  PubMed  CAS  Google Scholar 

  • Murphy DJ, Vance J (1999) Mechanisms of lipid-body formation. Trends Biochem Sci 24:109–115

    Article  PubMed  CAS  Google Scholar 

  • Nelson T, Gandotra N, Tausta SL (2008) Plant cell types: reporting and sampling with new technologies. Curr Opin Plant Biol 11:567–573

    Article  PubMed  CAS  Google Scholar 

  • Nonogaki H, Bassel GW, Bewley JD (2010) Germination – Still a mystery. Plant Sci 179:574–581

    Article  CAS  Google Scholar 

  • Offler CE, McCurdy DW, Patrick JW, Talbot MJ (2003) Transfer cells: cells specialized for a special purpose. Annu Rev Plant Biol 54:431–454

    Article  PubMed  CAS  Google Scholar 

  • Ooms JJJ, Léon-Kloosterziel KM, Bartels D, Koornneef M, Karssen CM (1993) Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana (A comparative study using abscisic acid-intensive abi3 mutants). Plant Physiol 102:1185–1191

    PubMed  CAS  Google Scholar 

  • Phuc TD, Prudent M, Sulpice R, Causse M, Fernie AR (2010) The influence of fruit load on the tomato pericarp metabolome in Solanum chmielewskii introgression line population. Plant Physiol 154:1128–1142

    Article  CAS  Google Scholar 

  • Rabi II, Zacharias JR, Millman S, Kusch P (1938) A new method of measuring nuclear magnetic moment. Phys Rev 53:318–318

    Article  CAS  Google Scholar 

  • Radchuk VV, Borisjuk L, Sreenivasulu N, Merx K, Mock HP, Rolletschek H, Wobus U, Weschke W (2009) Spatiotemporal profiling of starch biosynthesis and degradation in the developing barley grain. Plant Physiol. 150:190–204

    Article  PubMed  CAS  Google Scholar 

  • Rajjou L, Miche L, Huguet R, Job C, Job D (2007) The use of proteome and transcriptome profiling in the understanding of seed germination and identification of intrinsic markers determining seed quality, germination efficiency and early seedling vigour. In: Adkins SW, Ashmore SE, Navie SC (eds) Seeds: biology, development and ecology. CABI Publishing, Wallingford, pp 149–158

    Google Scholar 

  • Rate DN, Greenberg JT (2001) The Arabidopsis aberrant growth and death2 mutant shows resistance to Pseudomonas syringae and reveals a role for NPR1 in suppressing hypersensitive cell death. Plant J 27:203–211

    Article  PubMed  CAS  Google Scholar 

  • Rebeille F, Jabrin S, Bligny R, Loizeau K, Gambonnet B, Van Wilder V, Douce R, Ravanel S (2006) Methionine catabolism in Arabidopsis cells is initiated by a gamma-cleavage process and leads to S-methylcysteine and isoleucine syntheses. Proc Natl Acad Sci U S A 103:15687–15692

    Article  PubMed  CAS  Google Scholar 

  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29

    PubMed  CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  PubMed  CAS  Google Scholar 

  • Rook F, Corke F, Card R, Munz G, Smith C, Bevan MW (2001) Impaired sucrose induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J 26:421–433

    Article  PubMed  CAS  Google Scholar 

  • Rook F, Hadingham SA, Li Y, Bevan WM (2006) Sugar and ABA response pathways and the control of gene expression. Plant Cell Environ 29:426–434

    Article  PubMed  CAS  Google Scholar 

  • Roberts EH (1973) Predicting the storage of life seeds. Seed Sci Technol 1:499–514

    Google Scholar 

  • Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14:1191–1206

    Article  PubMed  CAS  Google Scholar 

  • Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J (2006) TM4 microarray software suite. Methods Enzymol 411:134–193

    Article  PubMed  CAS  Google Scholar 

  • Salon C, Munier-Jolain NG, Duc G, Voisin AS, Grandgirard D, Larmure A, Emery RJN, Ney B (2001) Grain legume seed filling in relation to nitrogen acquisition: a review and prospects with particular reference to pea. Agronomie 21:539–552

    Article  Google Scholar 

  • Sanchez DH, Pieckenstain FL, Escaray F, Erban A, Kraemer U, Udvardi MK, Kopka J (2011) Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis. Plant Cell Environ 34:605–617

    Article  PubMed  CAS  Google Scholar 

  • Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L (2008) Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J 54:608–620

    Article  PubMed  CAS  Google Scholar 

  • Schauer N, Zamir D, Fernie AR (2005) Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex. J Exp Bot 56:297–307

    Article  PubMed  CAS  Google Scholar 

  • Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie AR (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454

    Article  PubMed  CAS  Google Scholar 

  • Sekiyama Y, Kikuchi J (2007) Towards dynamic metabolic network measurements by multi-dimensional NMR-based fluxomics. Phytochem 68:2320–2329

    Article  CAS  Google Scholar 

  • Sen Z (2009) Global warming threat on water resources and environment: a review. Env Geol 57:321–329

    Article  Google Scholar 

  • Sinclair TR (1998) Historical changes in harvest index and crop nitrogen accumulation. Crop Sci 38:683–643

    Article  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51:49–81

    Article  PubMed  CAS  Google Scholar 

  • Song XL, Zhang TZ (2007) Identification of quantitative trait loci controlling seeds physical and nutrient traits in cotton. Seed Sci Res 17:243–251

    Article  CAS  Google Scholar 

  • Steinfath M, Strehmel N, Peters R, Schauer N, Groth D, Hummel J, Steup M, Selbig J, Kopka J, Geigenberger P, van Dongen JT (2010) Discovering plant metabolic biomarkers for phenotype prediction using an untargeted approach. Plant Biotechnol J 8:900–911

    Article  PubMed  CAS  Google Scholar 

  • Steuer R, Kurths J, Fiehn O, Weckwerth W (2003) Interpreting correlations in metabolic networks. Biochem Soc Trans 31:1476–1478

    Article  PubMed  CAS  Google Scholar 

  • Stone SL, Braybrook SA, Paula SL, Kwong LW, Meuser J, Pelletier J, Hsieh TF, Fischer RL, Goldberg RB, Harada JJ (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc Natl Acad Sci U S A 105:3151–3156

    Article  PubMed  CAS  Google Scholar 

  • Strehmel N, Hummel J, Erban A, Strassburg K, Kopka J (2008) Retention index thresholds for compound matching in GC-MS metabolite profiling. J Chromatogr B 871:182–190

    Article  CAS  Google Scholar 

  • Teng S, Rognoni S, Bentsink L, Smeekens S (2008) The Arabidopsis GSQ5/DOG1 Cvi allele is induced by the ABA-mediated sugar signalling pathway, and enhances sugar sensitivity by stimulating ABI4 expression. Plant J 55:372–381

    Article  PubMed  CAS  Google Scholar 

  • Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12–21

    Article  PubMed  CAS  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  PubMed  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665

    Article  PubMed  CAS  Google Scholar 

  • Tohge T, Fernie AR (2009) Web-based resources for mass-spectrometry-based metabolomics: a user’s guide. Phytochemistry 70:450–456

    Article  PubMed  CAS  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235

    Article  PubMed  CAS  Google Scholar 

  • Tozawa Y, Hasegawa H, Terakawa T, Wakasa K (2001) Characterization of rice anthranilate synthase alpha-subunit genes OASA1 and OASA2. Tryptophan accumulation in transgenic rice expressing a feedback-insensitive mutant of OASA1. Plant Physiol 126:1493–1506

    Article  PubMed  CAS  Google Scholar 

  • Usadel B, Nagel A, Steinhauser D, Gibon Y, Blasing OE, Redestig H. Sreenivasulu N, Krall L, Hanna MA, Poree F, Fernie AR, Stitt M (2006) PageMan: an interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments. BMC Bioinformatics 7:535

    Google Scholar 

  • Van Der Pijl L (1983) Principles of dispersal in higher plants. Springer, Berlin, pp 214

    Google Scholar 

  • van Dongen JT, Fröhlich A, Ramirez-Aguilar SJ, Schauer N, Fernie AR, Erban A, Kopka J, Clark J, Langer A, Geigenberger P (2009) Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of Arabidopsis plants. Ann Bot 103:269–280

    Article  PubMed  CAS  Google Scholar 

  • van Dongen JT, Schauer N (2010) Metabolic marker as a selection tool in plant breeding. ISB News Report. Information Systems for Biotechnology, Virginia Tech., Blacksburg

    Google Scholar 

  • Vazquez-Yanes C, Arechiga MR (1996) Ex situ conservation of tropical rain forest seed: problems and perspectives. Interciencia 21:293–298

    Google Scholar 

  • Vertucci CW, Farrant JM (1995) Acquisition and loss of desiccation tolerance. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker, New York, pp 237–271

    Google Scholar 

  • Vincent-Carbajosa J, Carbonero P (2005) Seed maturation: developing intrusive phase to accomplish a quiescent state. Int J Dev Biol 49:645–651

    Article  CAS  Google Scholar 

  • Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279

    Article  PubMed  CAS  Google Scholar 

  • Weckwerth W (2010) Metabolomics: an integral technique in systems biology. Bioanalysis 2:829–836

    Article  PubMed  CAS  Google Scholar 

  • Weckwerth W, Fiehn O. (2002) Can we discover novel pathways using metabolomics analysis? Curr Opin Biotechnol 13:156–160

    Article  PubMed  CAS  Google Scholar 

  • Weckwerth W, Loureiro ME, Wenzel K, Fiehn O (2004) Differential metabolic networks unravel the effects of silent plant phenotypes. Proc Natl Acad Sci U S A 101:7809–7814

    Article  PubMed  CAS  Google Scholar 

  • Weigelt K, Küster H, Radchuk R, Müller M, Weichert H, Fait A, Fernie AR, Saalbach I, Weber H (2008) Increasing amino acid supply in pea embryos reveals specific interactions of N and C metabolism, and highlights the importance of mitochondrial metabolism. Plant J 55:909–926

    Article  PubMed  CAS  Google Scholar 

  • White JA, Todd J, Newman T, Focks N, Girke T, de Ilarduya OM, Jaworski JG, Ohlrogge JB, Benning C (2000) A new set of Arabidopsis expressed sequence tags form developing seeds. The metabolic pathway from carbohydrates to seed oil. Plant Physiol 124:1582–1594

    Article  PubMed  Google Scholar 

  • Xie Z, Kapteyn J, Gang DR (2008) A systems biology investigation of the MEP/terpenoid and shikimate/phenylpropanoid pathways points to multiple levels of metabolic control in sweet basil glandular trichomes. Plant J 54:349–361

    Article  PubMed  CAS  Google Scholar 

  • Xu SB, Ti L, Deng ZY, Chong K, Xue Y, Wang T (2008) Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains. Plant Physiol 148:980–925

    Article  CAS  Google Scholar 

  • Yamada T, Matsuda F, Kasai K, Fukuoka S, Kitamura K, Tozawa Y, Miygawa H, Wakasa K (2008) Mutation of a rice gene encoding a phenylalanine biosynthetic enzyme results in accumulation of phenylalanine and tryptophan. Plant Cell 20:1316–1229

    Article  PubMed  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for delta I-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760

    Article  PubMed  CAS  Google Scholar 

  • Young JA, Young CG (1992) Seeds of woody plants of North America. Dioscorides Press, Portland, pp 407

    Google Scholar 

  • Yuan K, Wysocka-Diller J. (2006) Phytohormone signalling pathways interact with sugars during seed germination and seedling development. J Exp Bot 57:3359–3367

    Article  PubMed  CAS  Google Scholar 

  • Zhao JY, Becker HC, Zhang DQ, Zhang YF, Ecke W (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theo Appl Genet 113:33–38

    Article  CAS  Google Scholar 

  • Zhu G, Ye N, Zhang J (2009) Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiol 50:644–651

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Fait .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Toubiana, D., Fait, A. (2012). Metabolomics-Assisted Crop Breeding Towards Improvement in Seed Quality and Yield. In: Agrawal, G., Rakwal, R. (eds) Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4749-4_22

Download citation

Publish with us

Policies and ethics