Skip to main content

Heat Shock Protein 90 Versus Conventional Growth Factors in Acute and Diabetic Wound Healing

  • Chapter
  • First Online:
Cellular Trafficking of Cell Stress Proteins in Health and Disease

Part of the book series: Heat Shock Proteins ((HESP,volume 6))

Abstract

Diabetic foot lesions are responsible for more hospitalizations than any other complication of diabetes in the United States of America. The number of diabetic foot ulcer-caused lower limb amputations is approaching 100,000/year, a rapid increase due to an aging population and the rising incidence of obesity. Cost-effect treatments are currently limited. For decades, the conventional wisdom is that growth factors constitute the driving forces of wound healing. Therefore, more than 30 growth factors have been extensively studied in animal models and a dozen of these growth factors have been subjected to clinical trials. Only PDGF-BB received the US FDA approval for treatment of diabetic ulcers in 1997. However, the modest efficacy, high cost and risks of causing cancer by PDGF-BB (becaplermin gel) have limited its use in clinical practice. This reality continues to be overlooked or ignored. An unconventional wound-healing molecule, extracellular heat shock protein-90alpha (eHsp90α), has recently been reported. Unlike restricted cell type specificity of PDGF-BB, eHsp90α is a common pro-motility factor of all skin cells, eHsp90α also overrides TGFβ inhibition and hyperglycemia. Topical application of eHsp90α accelerated both acute and diabetic wound closure far more effectively than PDGF-BB. We discuss what makes Hsp90α superior to conventional growth factors in wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez OM, Meehan M, Ennis W, Thomas DR, Ferris FD, Kennedy KL, Rogers R, Bradley M, Baker JJ, Fernandez-Obregon A, Rodeheaver G (2002) Chronic wounds: palliative management for the frail population. Wounds 14(p Suppl):713–732

    Google Scholar 

  • Bandyopadhyay B, Fan JF, Guan SX, Li Y, Fedesco M, Chen M, Woodley DT, Li W (2006) A “traffic control” role for TGFbeta3: orchestrating dermal and epidermal cell motility during wound healing. J Cell Biol 172:1093–1105

    Article  PubMed  CAS  Google Scholar 

  • Basu, S, Srivastava PF (2000) Heat shock proteins: the fountainhead of innate and adaptive immune responses. Cell Stress Chaperones 5:443–451

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–313

    Article  PubMed  CAS  Google Scholar 

  • Bejcek BE et al (1992) The v-sis oncogene product but not platelet-derived growth factor (PDGF) A homodimers activate PDGF alpha and beta receptors intracellularly and initiate cellular transformation. J Biol Chem 267:3289–3293

    PubMed  CAS  Google Scholar 

  • Botusan IR, Sunkari VG, Savu O, Catrina AI, Grünler J, Lindberg S, Pereira T, Ylä-Herttuala S, Poellinger L, Brismar K, Catrina SB (2008) Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. Proc Natl Acad Sci U S A 105:19426–19431

    Article  PubMed  CAS  Google Scholar 

  • Boulton AJ, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J (2005) The global burden of diabetic foot disease. Lancet 366:1719–1724

    Article  PubMed  Google Scholar 

  • Brown GL et al (1989) Enhancement of wound healing by topical treatment with epidermal growth factor. N Engl J Med 321:76–79

    Article  PubMed  CAS  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  PubMed  CAS  Google Scholar 

  • Catrina SB, Okamoto K, Pereira T, Brismar K, Poellinger L (2004) Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function. Diabetes 53:3226–3232

    Article  PubMed  CAS  Google Scholar 

  • Chen JS, Hsu YM, Chen CC, Chen LL, Lee CC, Huang TS (2010) Secreted heat shock protein 90alpha induces colorectal cancer cell invasion through CD91/LRP-1 and NF-kappaB-mediated integrin alphaV expression. J Biol Chem 285:25458–25466

    Article  PubMed  CAS  Google Scholar 

  • Cheng CF et al (2008) Transforming growth factor alpha (TGFalpha)-stimulated secretion of HSP90alpha: using the receptor LRP-1/CD91 to promote human skin cell migration against a TGFbeta-rich environment during wound healing. Mol Cell Biol 28:3344–3358

    Article  PubMed  CAS  Google Scholar 

  • Cheng CF et al (2011) A fragment of secreted from Hsp90α carries properties that enable it to accelerate effectively both acute and diabetic wound healing in mice. J Clin Invest 121:4348–4361

    Google Scholar 

  • Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z (2005) Induction of heat shock proteins in B-cell exosomes. J Cell Sci 118:3631–3638

    Article  PubMed  CAS  Google Scholar 

  • Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79:129–68

    Article  PubMed  CAS  Google Scholar 

  • Elson DA, Ryan HE, Snow JW, Johnson R, Arbeit JM (2000) Coordinate up-regulation of hypoxia inducible factor (HIF)-1alpha and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Res 60:6189–6195

    PubMed  CAS  Google Scholar 

  • Eustace BK, Sakurai T, Stewart JK, Yimlamai D, Unger C, Zehetmeier C, Lain B, Torella C, Henning SW, Beste G, Scroggins BT, Neckers L, Ilag LL, Jay DG (2004) Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 6:507–514

    Google Scholar 

  • Fadini GP, Sartore S, Schiavon M, Albiero M, Baesso I, Cabrelle A, Agostini C, Avogaro A (2006) Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia-reperfusion injury in rats. Diabetologia 49:3075–3084

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Montequin JI et al (2007) Intralesional injections of Citoprot-P (recombinant human epidermal growth factor) in advanced diabetic foot ulcers with risk of amputation. Int Wound J 4:333–343

    PubMed  Google Scholar 

  • Fu X et al (1998) Randomised placebo-controlled trial of use of topical recombinant bovine basic fibroblast growth factor for second-degree burns. Lancet 352:1661–1664

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Sasaoka T, Fujimori T, Oya T, Ishii Y, Sabit H, Kawaguchi M, Kurotaki Y, Naito M, Wada T, Ishizawa S, Kobayashi M, Nabeshima Y, Sasahara M (2005) Deletion of the PDGFR-beta gene affects key fibroblast functions important for wound healing. J Biol Chem 280:9375–9389

    Article  PubMed  CAS  Google Scholar 

  • Gao W, Ferguson G, Connell P, Walshe T, Murphy R, Birney YA, O’Brien C, Cahill PA (2007) High glucose concentrations alter hypoxia-induced control of vascular smooth muscle cell growth via a HIF-1alpha-dependent pathway. J Mol Cell Cardiol 42:609–619

    Article  PubMed  CAS  Google Scholar 

  • Greenhalgh DG, Rieman M (1994) Effects of basic fibroblast growth factor on the healing of partial-thickness donor sites. A prospective, randomized, double-blind trial. Wound Repair Regen 2:113–121

    Article  PubMed  CAS  Google Scholar 

  • Grose R, Werner S (2004) Wound-healing studies in transgenic and knockout mice. Mol Biotechnol 28:147–166

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Habich C, Baumgart K, Kolb H, Burkart V (2000) The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J Immunol 168:569–576

    Google Scholar 

  • Hamed S, Brenner B, Abassi Z, Aharon A, Daoud D, Roguin A (2010) Hyperglycemia and oxidized-LDL exert a deleterious effect on endothelial progenitor cell migration in type 2 diabetes mellitus. Thromb Res 126:166–174

    Article  PubMed  CAS  Google Scholar 

  • Harrington C, Zagari MJ, Corea J, Klitenic J (2000) A cost analysis of diabetic lower-extremity ulcers. Diabetes Care 23:1333–1338

    Article  PubMed  CAS  Google Scholar 

  • Hightower LE, Guidon PT Jr (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138:257–266

    Article  PubMed  CAS  Google Scholar 

  • Knighton DR, Silver IA, Hunt TK (1981) Regulation of wound-healing angiogenesis-effect of oxygen gradients and inspired oxygen concentration. Surgery 90:262–270

    PubMed  CAS  Google Scholar 

  • Kuroita TH, Tachibana H, Ohashi S, Shirahata H, Murakami (1992) Growth stimulating activity of heat shock protein 90 alpha to lymphoid cell lines in serum-free medium. Cytotechnology 8(1992):109–117

    Google Scholar 

  • Lancaster GI, Febbraio MA (2005) Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem 280:23349–23355

    Article  PubMed  CAS  Google Scholar 

  • LeGrand EK (1998) Preclinical promise of becaplermin (rhPDGF-BB) in wound healing. Am J Surg 176:48S–54S

    Article  PubMed  CAS  Google Scholar 

  • Li W, Li Y, Guan S, Fan J, Cheng C, Bright A, Chin C, Chen M, Woodley DT (2007) Extracellular heat shock protein-90alpha: linking hypoxia to skin cell motility and wound healing. EMBO J 26:1221–1233

    Article  PubMed  CAS  Google Scholar 

  • Li W, Sahu D, Tsen F (2012) Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biochim Biophys Acta 1823:730–741

    Google Scholar 

  • Liao DF et al (2000) Purification and identification of secreted oxidative stress-induced factors from vascular smooth muscle cells. J Biol Chem 275:189–196

    Article  PubMed  CAS  Google Scholar 

  • Lillis AP, Mikhailenko I, Strickland DK (2005) Beyond endocytosis: LRP function in cell migration, proliferation and vascular permeability. J Thromb Haemost 3:1884–1893

    Article  PubMed  CAS  Google Scholar 

  • Lynch SE, Nixon JC, Colvin RB, Antoniades HN (1987) Role of platelet-derived growth factor in wound healing: synergistic effects with other growth factors. Proc Natl Acad Sci U S A 84:7696–7700

    Article  PubMed  CAS  Google Scholar 

  • Ma B et al (2007) Randomized, multicenter, double-blind, and placebo-controlled trial using topical recombinant human acidic fibroblast growth factor for deep partial-thickness burns and skin graft donor site. Wound Repair Regen 15:795–799

    Article  PubMed  Google Scholar 

  • Mandracchia VJ, Sanders SM, Frerichs JA (2001) The use of becaplermin (rhPDGF-BB) gel for chronic nonhealing ulcers. A retrospective analysis. Clin Podiatr Med Surg 18:189–209

    PubMed  CAS  Google Scholar 

  • Martin P (1997) Wound healing-aiming for perfect skin regeneration. Science 276:75–81

    Article  PubMed  CAS  Google Scholar 

  • Mandracchia VJ, Sanders SM, Frerichs JA (2001) The use of becaplermin (rhPDGF-BB) gel for chronic nonhealing ulcers. A retrospective analysis. Clin Podiatr Med Surg 18:189–209 (viii)

    PubMed  CAS  Google Scholar 

  • Mascardo RN (1988) The effects of hyperglycemia on the directed migration of wounded endothelial cell monolayers. Metabolism 37:378–85

    Article  PubMed  CAS  Google Scholar 

  • Mohan VK (2006) Recombinant human epidermal growth factor (REGEN-D 150): effect on healing of diabetic foot ulcers. Diabetes Res Clin Pract 78:405–411

    Article  Google Scholar 

  • Multhoff G, Hightower LE (1996) Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones 1:167–176

    Article  PubMed  CAS  Google Scholar 

  • Nagai MK, Embil JM (2002) Becaplermin: recombinant platelet derived growth factor, a new treatment for healing diabetic foot ulcers. Expert Opin Biol Ther 2:211–218

    Article  PubMed  CAS  Google Scholar 

  • Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA, Henson PM (2001) C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194:81–795

    Article  Google Scholar 

  • Olerud JE (2008) Models for diabetic wound healing and healing into percutaneous devices. J Biomater Sci Polym Ed 19:1007–1020

    Article  PubMed  CAS  Google Scholar 

  • Pastor JC, Calonge M (1992) Epidermal growth factor and corneal wound healing. A multicenter study. Cornea 11:311–314

    Article  PubMed  CAS  Google Scholar 

  • Peppa M, Stavroulakis P, Raptis SA (2009) Advanced glycoxidation products and impaired diabetic wound healing. Wound Repair Regen 17:461–472

    Article  PubMed  Google Scholar 

  • Pierce GF, Tarpley JE, Yanagihara D, Mustoe TA, Fox GM, Thomason A (1992) Platelet-derived growth factor (BB homodimer), transforming growth factor-beta 1, and basic fibroblast growth factor in dermal wound healing. Neovessel and matrix formation and cessation of repair. Am J Pathol 140:1375–1388

    PubMed  CAS  Google Scholar 

  • Poon E et al (2009) Targeting the hypoxia-inducible factor (HIF) pathway in cancer. Expert Rev Mol Med 11:e26

    Article  PubMed  Google Scholar 

  • Ramsay HA, Heikkonen EJ, Laurila PK (1995) Effect of epidermal growth factor on tympanic membranes with chronic perforations: a clinical trial. Otolaryngol Head Neck Surg 113:375–379

    Article  PubMed  CAS  Google Scholar 

  • Robson MC, Hill DP, Smith PD, Wang X, Meyer-Siegler K, Ko F, VandeBerg JS, Payne WG, Ochs D, Robson LE (2000) Sequential cytokine therapy for pressure ulcers: clinical and mechanistic response. Ann Surg 231:600–611

    Article  PubMed  CAS  Google Scholar 

  • Smiell JM, Wieman TJ, Steed DL, Perry BH, Sampson AR, Schwab BH (1999) Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies. Wound Repair Regen 7:335–346

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2007a) Life with oxygen. Science 318:62–64

    Article  CAS  Google Scholar 

  • Semenza GL (2007b) Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov Today 12:853–869

    Article  CAS  Google Scholar 

  • Sen CK et al (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17:763–771

    Article  PubMed  Google Scholar 

  • Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  PubMed  CAS  Google Scholar 

  • Steed DL (1995) Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers. Diabetic Ulcer Study Group. J Vasc Surg 21:71–78 (discussion 79–81)

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Kulkarni AB (2010) Extracellular heat shock protein HSP90beta secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-beta1. Biochem Biophys Res Commun 398:525–5331

    Article  PubMed  CAS  Google Scholar 

  • Tandara AA, Mustoe TA (2004) Oxygen in wound healing-more than a nutrient. World J Surg 28:294–300

    Article  PubMed  Google Scholar 

  • Tredget EE, Nedelec B, Scott PG, Ghahary A (1997) Hypertrophic scars, keloids, and contractures. The cellular and molecular basis for therapy. Surg Clin North Am 77:701–730

    Article  PubMed  CAS  Google Scholar 

  • Tsutsumi S, Scroggins B, Koga F, Lee MJ, Trepel J, Felts S, Carreras C, Neckers L (2008) A small molecule cell-impermeant Hsp90 antagonist inhibits tumor cell motility and invasion. Oncogene 27:2478–2487

    Article  PubMed  CAS  Google Scholar 

  • Uchi H et al (2009) Clinical efficacy of basic fibroblast growth factor (bFGF) for diabetic ulcer. Eur J Dermatol 19:461–468

    PubMed  Google Scholar 

  • Vandivier RW, Ogden CA, Fadok VA, Hoffmann PR, Brown KK, Botto M, Walport MJ, Fisher JH, Henson PM, Greene KE (2002) Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J Immunol 169:3978–3986

    PubMed  CAS  Google Scholar 

  • Wang X, Song X, Zhuo W, Fu Y, Shi H, Liang Y, Tong M, Chang G, Luo Y (2009) The regulatory mechanism of Hsp90alpha secretion and its function in tumor malignancy. Proc Natl Acad Sci U S A 106:21288–21293

    Article  PubMed  CAS  Google Scholar 

  • Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870

    PubMed  CAS  Google Scholar 

  • Wieman TJ, Smiell JM, Su Y (1998) Efficacy and safety of a topical gel formulation of recombinant human platelet-derived growth factor-BB (becaplermin) in patients with chronic neuropathic diabetic ulcers. A phase III randomized placebo-controlled double-blind study. Diabetes Care 21:822–827

    Article  PubMed  CAS  Google Scholar 

  • Woodley DT, Fan J, Cheng CF, Li Y, Chen M, Bu G, Li W (2009) Participation of the lipoprotein receptor LRP1 in hypoxia-HSP90alpha autocrine signaling to promote keratinocyte migration. J Cell Sci 122:1495–1498

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Harris SL, Levine AJ (2006) The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 66:4795–4801

    Google Scholar 

Download references

Acknowledgments

This study was supported by NIH grant GM/AR066193-01 (to W. L.) and AR46538 (to D. T. W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Li, W., O’Brien, K., Woodley, D., Chen, M. (2012). Heat Shock Protein 90 Versus Conventional Growth Factors in Acute and Diabetic Wound Healing. In: Henderson, B., Pockley, A. (eds) Cellular Trafficking of Cell Stress Proteins in Health and Disease. Heat Shock Proteins, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4740-1_17

Download citation

Publish with us

Policies and ethics