Evaporation and Evapotranspiration Estimation Methods



Estimation in spite of measurement is the common approach to acquire ET data for most applications. Selection of a method for a specific application requires evaluation of methods with respect to the accuracy needed, available input data, and cost of data generation. Methods vary by complexity and input data requirement. In cases where simple methods provide reasonable estimates, adaptation of such methods could be a cost-effective way of acquiring ET data. In this chapter, several open water evaporation and ET estimation methods are provided with application to a region. Methods are organized from the simplest to the most complex with evaluation of input data requirements. Measured, derived, and estimated input parameters for the application of the Penman–Monteith method are presented in detail with experimental measurements of resistance terms.


Evaporation Evapotranspiration Lake evaporation estimation methods Evapotranspiration estimation methods Penman–Monteith 


  1. Abtew W (1996) Evapotranspiration measurements and modeling for three wetland systems in South Florida. J Am Water Resour Assoc 127(3):140–147Google Scholar
  2. Abtew W (2001) Evaporation estimation for Lake Okeechobee in South Florida. J Irrig Drain 127(3):140–147CrossRefGoogle Scholar
  3. Abtew W (2005) Evapotranspiration in the Everglades: comparison of Bowen ratio measurements and model estimates. In: Proceedings of the 2005 ASAE annual international meeting. ASAE, St. Joseph, MIGoogle Scholar
  4. Abtew W, Obeysekera J (1995) Lysimeter study of evapotranspiration of cattails and comparison of three estimation methods. Trans ASAE 38(1):121–129Google Scholar
  5. Abtew W, Gregory JM, Borrelli J (1989) Wind profile: estimation of displacement height and aerodynamic roughness. Trans ASAE 32(2):521–527Google Scholar
  6. Abtew W, Newman S, Pietro K, Kosier T (1995) Canopy resistance studies of cattails. Trans ASAE 38(1):113–119Google Scholar
  7. Abtew W, Obeysekera J, Iricanin N (2011) Pan evaporation and evaporation trends in south Florida. Hydrol Process 25:958–969CrossRefGoogle Scholar
  8. Allen RG, Pruitt WO (1986) Rational use of Blaney-Criddle formula. J Irrig Drain Eng 112(2)Google Scholar
  9. Allen RG, Jensen ME, Wright JL, Burman RD (1989) Operational estimation of reference evapotranspiration. Agron J 81:650–662CrossRefGoogle Scholar
  10. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop water requirements. FAO irrigation and drainage paper no. 56. FAO, RomeGoogle Scholar
  11. Choudhury BJ, Idso SB (1985) An empirical model for stomatal resistance of field-grown wheat. Agric Forest Meteorol 36:65–82CrossRefGoogle Scholar
  12. Coulomb CV, Legesse D, Gasse F, Travi Y, Chernet T (2001) Lake evaporation estimates in tropical Africa (Lake Ziway of Ethiopia). J Hydrol 245:1–18CrossRefGoogle Scholar
  13. Delclaux F, Coudrain A (2005) Optimal evaporation models for simulation of large lake levels: application to Lake Titicaca, South America. Geophys Res Abstr 7:53–65Google Scholar
  14. Doorenbos J, Pruitt WO (1977) Guidelines for predicting crop water requirements. FAO irrigation and drainage paper 24. FAO, RomeGoogle Scholar
  15. Dugas WW, Fritschen LJ, Gay LW, Jeld AA, Matthias AD, Reicosky DC, Steduto P, Steiner JL (1991) Bowe ratio, eddy correlation, and portable chamber measurements of sensible and latent heat flux over irrigated spring wheat. Agric Forest Meteorol 56(1–2):1–20CrossRefGoogle Scholar
  16. Enku T, van der Tol C, Gieske ASM, Rientjes THM (2011) Evapotranspiration modeling using remote sensing and empirical models in the Fogera floodplain, Ethiopia. In: Melesse A (ed) Nile River Basin: hydrology, climate and water use. Springer, Dordercht, p 163, 170Google Scholar
  17. Farnsworth RK, Thompson ES, Peck EL (1982) Evaporation atlas for the contiguous 48 United States. NOAA Technical Report NWS 33. National Weather Service, Washington, DC, June 1982Google Scholar
  18. Frevert DK, Hill RW, Braaten BC (1983) Estimation of FAO evapotranspiration coefficients. J Irrig Drain ASCE 109(IR2):265–270CrossRefGoogle Scholar
  19. German ER (2000) Regional evaluation of evapotranspiration in the Everglades. USGS Water Resources Investigations Report 00–4217. USGS, Tallahassee, FLGoogle Scholar
  20. Gharsallah O, Moncini M, Rana G (2009) Bulk canopy resistance: determination and modeling for actual evapotranspiration estimation of maize. IX Convegno Nazionale dell’ Associazione Italiana di Ingegneria Agraria, Ischia Porto, 12–16 Settembre 2009, memoria n. 2–30Google Scholar
  21. Hansen S (1984) Estimation of potential evapotranspiration. Nord Hydrol 15:205–212Google Scholar
  22. Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(12):96–99Google Scholar
  23. Jacobs JM, Myers DA, Andersoin MC, Diak GR (2002) GOES surface insolation to estimate wetland evapotranspiration. J Hydrol 266:53–65CrossRefGoogle Scholar
  24. Jensen ME (1974) Consumptive use of water and irrigation water requirements. ASCE, New YorkGoogle Scholar
  25. Katerji N, Perrier A (1983) A modélisation de l’évapotranspiration réelle d’une parcelled de luzerne: rôle d’un coefficient culltural. Agronomie 3(6):513–521 (in French)CrossRefGoogle Scholar
  26. Katerji N, Rana G (2008) Crop evapotranspiration measurement and estimation in the Mediterranean region. INRA-CRA, BariGoogle Scholar
  27. Kim J, Verma SB (1991) Modeling canopy stomatal conductance in a temperate grassland ecosystem. Agric Forest Meteorol 55:149–166CrossRefGoogle Scholar
  28. Lafleur PM, Roulet NT (1992) A comparison of evapotranspiration rates from two fens of the Hudson Bay Lowland. Aquat Bot 44:59–69CrossRefGoogle Scholar
  29. Lafleur PM, Rouse WR (1988) The influence of surface cover and climate on energy partitioning and evaporation in subarctic wetland. Bound Layer Meteorol 44:327–3CrossRefGoogle Scholar
  30. LI-COR, Inc (1989) LI-600 steady state porometer instruction manual. Pub. No. 8210–0030, Lincoln, NebraskaGoogle Scholar
  31. Maidment DR (ed) (1993) Handbook of hydrology. McGraw-Hill, Inc., New YorkGoogle Scholar
  32. Makkink GF (1957) Testing the Penman formula by means of lysimeters. J Inst Water Eng 11:277–288Google Scholar
  33. Melesse A, Abtew W, Dessalegne T (2009) Evaporation estimation of Rift Valley Lakes: comparison of models. Sensor J 9:9603–9615. doi:10.3390/s91209603 CrossRefGoogle Scholar
  34. Monteith JL (1973) Principles of environmental physics. Edward Arnold, LondonGoogle Scholar
  35. Oudin L, Hervieu F, Michel C, Perrin C, Andreassian V, Anctil F, Loumagne C (2005) Which potential evapotranspiration input for a lumped model part 2-towards a simple and efficient potential evapotranspiration model for rainfall-runoff modeling. J Hydrol 303:290–306CrossRefGoogle Scholar
  36. Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond A Math Phys Sci 193(1032):120–145CrossRefGoogle Scholar
  37. Roberts J, Pymar CF, Wallace JS, Pitman RM (1980) Seasonal changes in leaf area, stomatal and canopy conductance and transpiration from bracken below a forest canopy. J Appl Ecol 17:409–422CrossRefGoogle Scholar
  38. Saugier B, Katerji N (1991) Some plant factors controlling evapotranspiration. Agric Forest Meteorol 54:263–277CrossRefGoogle Scholar
  39. Shoemaker WB, Sumner DM (2006) Alternate corrections for estimating actual wetland evapotranspiration from potential evapotranspiration. Wetlands 26(2):528–543CrossRefGoogle Scholar
  40. Shuttleworth WJ (1993) Chapter 4: Evaporation. In: Maidment DR (ed) Hand book of hydrology. McGraw-Hill, Inc., New YorkGoogle Scholar
  41. Slabbers PJ (1977) Surface roughness of crops and potential evapotranspiration. J Hydrol 34:181–191CrossRefGoogle Scholar
  42. Steiner JL, Howell TA, Schneider AD (1991) Lysimetric evaluation of daily potential evapotranspiration models for grain sorghum. Agron J 83:240–247CrossRefGoogle Scholar
  43. Szeicz G, Long IF (1969) Surface resistance of crop canopies. Water Resour Res 83(3):622–633CrossRefGoogle Scholar
  44. Todorovic M (1999) Single-layer evapotranspiration model with variable canopy resistance. J Irrig Drain Eng 125(5):235–245CrossRefGoogle Scholar
  45. Weert RVD, Kamerling GE (1974) Evapotranspiration of water hyacinth (Eichhornia crassipes). J Hydrol 22:201–212CrossRefGoogle Scholar
  46. Xu CY, Singh VP (2000) Evaluation and generalization of radiation-based methods for calculating evaporation. Hydrol Process 14:339–349CrossRefGoogle Scholar
  47. Zhai L, Feng Q, Li Q, Xu C (2009) Comparison and modification of equations for calculating evapotranspiration (ET) with data from Gansu Province, Northwest China. Irrig Drain. doi:10.1002/ird.502

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.South Florida Water Management DistrictWest Palm BeachUSA
  2. 2.Department of Earth and EnvironmentFlorida International UniversityMiamiUSA

Personalised recommendations