Skip to main content

Cytoskeleton and Nucleotide Signaling in Glioma C6 Cells

  • Chapter
  • First Online:
Book cover Glioma Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 986))

Abstract

This chapter describes signaling pathways stimulated by the P2Y2 nucleotide receptor (P2Y2R), that regulate cellular processes dependent on actin cytoskeleton dynamics in glioma C6 cells. P2Y2R coupled with G-proteins, in response to ATP or UTP, regulates the level of phosphatidylinositol-4,5-bisphosphate (PIP2) which modulates a variety of actin binding proteins and is involved in calcium response and activates Rac1 and RhoA proteins. The RhoA/ROCK signaling pathway plays an important role in contractile force generation needed for the assembly of stress fibers, focal adhesions and for tail retraction during cell migration. Blocking of this pathway by a specific Rho-kinase inhibitor induces changes in F-actin organization and cell shape and decreases the level of phosphorylated myosin II and cofilin. In glioma C6 cells these changes are reversed after UTP stimulation of P2Y2R. Signaling pathways responsible for this compensation are connected with calcium signaling. Stimulation of the Rac1 mediated pathway via Go proteins needs additional interaction between αvβ5 integrins and P2Y2Rs. Rac1 activation is necessary for cofilin phosphorylation as well as integrin activation needed for focal complexes formation and stabilization of lamellipodium. Inhibition of positive Rac1 regulation prevents glioma C6 cells from recovery of control cell like morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DAG:

Diacylglycerol

EGFRs:

Epidermal growth factor receptors

FAK:

Focal Adhesion Kinase

GEFs:

Guanine nucleotide exchange factors

GPCRs:

G protein-coupled receptors

IP3 :

Inositol-1,4,5-trisphosphate

LIMK:

LIM kinase

MARCKS:

Myristoylated alanine rich C-kinase substrate

MHC:

Myosin heavy chains

MLC:

Myosin light chain

MLCK:

Myosin light chain kinase

MLCP:

Myosin light chain phosphatase

P2Y2R:

P2Y2 receptor

PAK:

p21 Activated kinase

PDGFRs:

Platelet-derived growth factor receptors

PI3K:

Phosphatidylinositol 3-kinase

PIP2 :

Phosphatidylinositol-4,5-bisphosphate

PIP 5-kinase:

Phosphatidylinositol-4-phosphate 5-kinase

PIP:

Phosphoinositol phosphate

PKC:

Protein kinase C

PLC:

Phospholipase C

P-MLC:

Phosphorylated myosin light chain

PTX:

Pertussis toxin

ROCK:

Rho-associated protein kinase

SSH:

Slingshot homolog

TESK:

Testis-specific kinase

References

  • Allen WE, Jones GE, Pollard JW, Ridley AJ (1997) Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages. J Cell Sci 110:707–720

    PubMed  CAS  Google Scholar 

  • Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K (1996) Pohsphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271:20246–20249

    PubMed  CAS  Google Scholar 

  • Andrianantoandro E, Pollard TD (2006) Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell 24:13–23

    PubMed  CAS  Google Scholar 

  • Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–809

    PubMed  CAS  Google Scholar 

  • Aspenstrom P (1997) A Cdc42 target protein with homology to the non-kinase domain of FER has a potential role in regulating the actin cytoskeleton. Curr Biol 7:479–487

    PubMed  CAS  Google Scholar 

  • Bagchi S, Liao Z, Gonzales FA, Chorna NE, Seye CI, Weisman GA, Erb L (2005) The P2Y2 nucleotide receptor interacts with alpha integrins to activate Go and induce cell migration. J Biol Chem 280:39050–39057

    PubMed  CAS  Google Scholar 

  • Bamburg JR, McGough A, Ono S (1999) Putting a new twist on actin: ADF/cofilin modulate actin dynamics. Trends Cell Biol 9:364–370

    PubMed  CAS  Google Scholar 

  • Baorto DM, Mellado W, Shelanski ML (1992) Astrocyte process growth induction by actin breakdown. J Cell Biol 117:357–367

    PubMed  CAS  Google Scholar 

  • Bernard O (2007) Lim kinases, regulators of actin dynamics. Int J Biochem Cell Biol 39:1071–1076

    PubMed  CAS  Google Scholar 

  • Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348:241–255

    PubMed  CAS  Google Scholar 

  • Boarder MR, Hourani SM (1998) The regulation of vascular function by P2 receptors: multiple sites and multiple receptors. Trends Pharmacol Sci 19:99–107

    PubMed  CAS  Google Scholar 

  • Boldt K, Rist W, Weiss SM, Weith A, Lenter MC (2006) FPRL-1 induces modifications of migration-associated proteins in human neutrophils. Proteomics 6:4790–4799

    PubMed  CAS  Google Scholar 

  • Brzeska H, Szczepanowska J, Matsumura F, Korn ED (2004) Rac-induced increase of phosphorylation of myosin regulatory light chain in HeLa cells. Cell Motil Cytoskel 58:186–199

    CAS  Google Scholar 

  • Campellone KG, Welch MD (2010) A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cel Biol 11:237–251

    CAS  Google Scholar 

  • Caron E, Hall A (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:1717–1721

    PubMed  CAS  Google Scholar 

  • Chesarone MA, Goode BL (2009) Acti nucleation and elongation factors: mechanisms and interplay. Curr Opin Cell Biol 21:28–37

    PubMed  CAS  Google Scholar 

  • Chrzanowska-Wodnicka M, Burridge K (1996) Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133:1403–1415

    PubMed  CAS  Google Scholar 

  • Chung CY, Funamoto S, Firtel RA (2001) Signaling pathways controlling cell polarity and chemotaxis. Trends Biochem Sci 26:557–566

    PubMed  CAS  Google Scholar 

  • Clark EA, King WG, Brugge JS, Symons M, Hynes RO (1998) Integrin-mediated signals regulated by members of the Rho family of GTPases. J Cell Biol 142:573–586

    PubMed  CAS  Google Scholar 

  • Condeelis J (2001) How is actin polymerization nucleated in vivo? Trends Cell Biol 11:288–293

    PubMed  CAS  Google Scholar 

  • Cooper JA, Schafer DA (2000) Control of actin assembly and disassembly at filament ends. Curr Opin Cell Biol 12:97–103

    PubMed  CAS  Google Scholar 

  • Cory GO, Ridley AJ (2002) Cell motility: braking WAVEs. Nature 418:732–733

    PubMed  CAS  Google Scholar 

  • Dan C, Kelly A, Bernard O, Minden A (2001) Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J Biol Chem 276:32115–32121

    PubMed  CAS  Google Scholar 

  • Delorme V, Machacek M, DerMardirossian C, Anderson KL, Wittmann T, Hanein D, Waterman-Storer C, Danuser G, Bokoch GM (2007) Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin network. Dev Cell 13:646–662

    PubMed  CAS  Google Scholar 

  • DesMarais V, Ichetovkin I, Condeelis J, Hitchcock-DeGregori SE (2002) Spatial regulation of actin dynamics: a tropomyosin-free, actin-rich compartment at the leading edge. J Cell Sci 115:4649–4660

    PubMed  CAS  Google Scholar 

  • DesMarais V, Ghosh M, Eddy R, Condeelis J (2005) Cofilin takes the lead. J Cell Sci 118:19–26

    PubMed  CAS  Google Scholar 

  • Eda M, Yonemura S, Kato T, Watanabe N, Ishizaki T, Madaule P, Narumiya S (2001) Rho-dependent transfer of Citron-kinase to the cleavage furrow of dividing cells. J Cell Sci 114:3273–3284

    PubMed  CAS  Google Scholar 

  • Edwards DC, Sanders LC, Bokoch GM, Gill GN (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signaling to actin cytoskeleton dynamics. Nat Cell Biol 1:253–259

    PubMed  CAS  Google Scholar 

  • Erb L, Liu J, Ockerhausen J, Kong Q, Garrad RC, Griffin K, Neal C, Krugh B, Santiago-Pérez LI, González FA, Gresham HD, Turner JT, Weisman GA (2001) An RGD sequence in the P2Y2 receptor interacts with αvβ3 ntegrins and is required for Go-mediated signal transduction. J Cell Biol 153:491–501

    PubMed  CAS  Google Scholar 

  • Erb L, Liao Z, Seye CI, Weismann GA (2006) P2 receptors: intracellular signaling. Eur J Physiol 452:552–562

    CAS  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) RhoGTPases in cell biology. Nature 420:629–635

    PubMed  CAS  Google Scholar 

  • Fukami K, Furuhashi M, Inagaki M, Endo T, Hatano S, Tekanawa T (1992) Requirement of phosphatidylinositol 4,5-biphosphate for alpha-actinin function. Nature 359:150–152

    PubMed  CAS  Google Scholar 

  • Fukata Y, Kimura K, Oshiro N, Saya H, Matsumura Y, Kaibuchi K (1998) Association of the myosin-binding subunit of myosin phosphatase and moesin: dual regulation of moesin phosphorylation by Rho-associated kinase and myosin phosphatase. J Cell Biol 141:409–418

    PubMed  CAS  Google Scholar 

  • Fukata Y, Amano M, Kaibuchi K (2001) Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol 22:32–39

    CAS  Google Scholar 

  • Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS (2004) Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304:743–746

    PubMed  CAS  Google Scholar 

  • Glaser M, Wanaski S, Buser CA, Boguslavsky V, Rashidzada W, Morris A, Rebecchi M, Scarlata SF, Runnels LW, Prestwich GD, Chen J, Aderem A, Ahn J, McLaughlin S (1996) Myristoylated alanine-rich C kinase substrate (MARCKS) produces reversible inhibition of phospholipase C by sequestering phosphatidylinositol 4,5-bisphosphate in lateral domains. J Biol Chem 271:26187–26193

    PubMed  CAS  Google Scholar 

  • Gilmore AP, Burridge K (1996) Regulation of vinculin binding to talin and actin by phosphatidylinositol 4,5-biphosphate. Nature 381:531–535

    Google Scholar 

  • Glotzer M (2001) Animal cell cytokinesis. Annu Rev Cell Dev Biol 17:351–386

    PubMed  CAS  Google Scholar 

  • Greig AV, James SE, McGrouther DA, Terenghi G, Burnstock G (2003) Purinergic receptor expression in the regeneration epidermis in a rat model of normal and delayed wound healing. Exp Dermatol 12:860–871

    PubMed  CAS  Google Scholar 

  • Gruneberg U, Neef R, Li X, Chan EH, Chalamalasetty RB, Nigg EA, Barr FA (2006) KIF14 and citron kinase act together to promote efficient cytokinesis. J Cell Biol 172:363–372

    PubMed  CAS  Google Scholar 

  • Gupton SL, Anderson KL, Kole TP, Fischer RS, Ponti A, Hitchcock-DeGregori SE, Danuser G, Fowler VM, Wirtz D, Hanein D, Waterman-Storer CM (2005) Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin. J Cell Biol 168:619–631

    PubMed  CAS  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    PubMed  CAS  Google Scholar 

  • Harlan JE, Yoon HS, Hajduk PJ, Fesik SW (1995) Structural characterization of the interaction between a pleckstrin hamalogy domain and phosphatidylinositol 4,5-bisphosphate. Biochemistry 34:9859–9864

    PubMed  CAS  Google Scholar 

  • Hartshorne DL, Ito M, Erdodi F (1998) Myosin light chain phosphatase: subunit composition, interactions and regulation. J Muscle Res Cell Motil 19:325–341

    PubMed  CAS  Google Scholar 

  • Hartwig JH, Bokoch GM, Carpenter CL, Janmey PA, Taylor LA, Toker A, Stossel TP (1995) Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82:643–653

    PubMed  CAS  Google Scholar 

  • Hirao M, Sato N, Kondo T, Yonemura S, Monden M, Sasaki T, Takai Y, Tsukita Sh, Sa T (1996) Regulation mechanism of ERM (ezrin/redixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J Cell Biol 135:37–51

    PubMed  CAS  Google Scholar 

  • Huang TY, DerMardirossian C, Bokoch GM (2006) Cofilin phosphatases and regulation of actin dynamics. Curr Opin Cell Biol 18:26–31

    PubMed  CAS  Google Scholar 

  • Huttelmaier S, Mayboroda O, Harbeck B, Jarchau T, Jockusch BM, Rudiger M (1998) The interaction of the cell-contact proteins VASP and vinculin is regulated by phosphatidylinositol 4,5-biphosphate. Curr Biol 8:479–488

    PubMed  CAS  Google Scholar 

  • Ichetovkin I, Grant W, Condeelis J (2002) Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr Biol 12:79–84

    PubMed  CAS  Google Scholar 

  • Itoh RE, Kurokawa K, Ohba Y, Yoshizaki H, Mochizuki N, Matsuda M (2002) Activation of Rac and Cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol Cell Biol 22:6582–6591

    PubMed  CAS  Google Scholar 

  • Kaibuchi K, Kuroda S, Amano M (1999) Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 68:459–486

    PubMed  CAS  Google Scholar 

  • Katoh K, Kano Y, Amano M, Onishi H, Kaibuchi K, Fujiwara K (2001) Rho-kinase-mediated contraction of isolated stress fibers. J Cell Biol 153:569–583

    PubMed  CAS  Google Scholar 

  • Kawano Y, Fukata Y, Oshiro N, Amano M, Nakamura T, Ito M, Matsumura F, Inagaki M, Kaibuchi K (1999) Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Biol Cell 147:1023–1038

    CAS  Google Scholar 

  • Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273:245–248

    PubMed  CAS  Google Scholar 

  • Kłopocka W, Pomorski P (1996) Cytoplasmic calcium transients in Amoeba proteus during induction of pinocytotic and non-pinocytotic rosettes. Acta Protozool 35:169–175

    Google Scholar 

  • Kłopocka W, Rędowicz MJ (2003) Effect of Rho family GTP-binding on Amoeba proteus. Protoplasma 220:163–172

    PubMed  Google Scholar 

  • Kłopocka W, Rędowicz MJ (2004) Rho/Rho-dependent kinase affects locomotion and actin-myosin II activity of Amoeba proteus. Protoplasma 224:113–121

    PubMed  Google Scholar 

  • Kłopocka W, Moraczewska J, Rędowicz MJ (2005) Characterisation of the Rac/PAK pathway in Amoeba proteus. Protoplasma 224:77–84

    Google Scholar 

  • Klosses WB, Shattil SJ, Pampori N, Schwartz MA (2001) Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration. Nat Cell Biol 3:316–320

    Google Scholar 

  • Korczyński J, Sobierajska K, Krzemiński P, Wasik A, Wypych D, Pomorski P, Kłopocka W (2011) Is the MLC phosphorylation essential for the recovery from ROCK inhibition in glioma C6 cells? Acta Biochim Pol 58:125–130

    PubMed  Google Scholar 

  • Korczyński J, Sobierajska K, Pomorski P, Kłopocka W (in preparation) The role of αvβ5 integrins in glioma C6 cells recovery from ROCK inhibition

    Google Scholar 

  • Kosako H, Yoshida T, Matsumura F, Ishizaki T, Narumiya S, Inagaki M (2000) Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of myosin light chain and not ezrin/radixin/moezin proteins at the cleavage furrow. Oncogene 19:6059–6064

    PubMed  CAS  Google Scholar 

  • Kozma R, Sarner S, Ahmed S, Lim L (1997) Rho family GTPases and neuronal growth cone remodeling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylocholine and collapse induced by RhoA and lysophosphatidic acid. Mol Cell Biol 17:1201–1211

    PubMed  CAS  Google Scholar 

  • Liao Z, Seye CI, Weisman GA, Erb L (2007) The P2Y2 nucleotide receptor requires interaction with αv integrins to access and activate G12. J Cell Sci 120:1654–1662

    PubMed  CAS  Google Scholar 

  • Liu J, Liao Z, Camden J, Griffin KD, Garrad RC, Santiago-Pérez LI, Gonzáles FA, Seye CI, Weisman GA, Erb L (2004) Src homology 3 binding sites in the P2Y2 nucleotide receptor interact with Src and regulate activities of Src, proline-rich tyrosine kinase 2, and growth factor receptors. J Biol Chem 279:8212–8218

    PubMed  CAS  Google Scholar 

  • Luo L (2000) Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 1:173–180

    PubMed  CAS  Google Scholar 

  • Lustig KD, Weisman GA, Turner JT, Garrad R, Shiau AK, Erb L (1996) P2U purinoreceptors: cDNA cloning, signal transduction mechanisms and structure-function analysis. In: Chadwick DJ, Goode JA (eds), P2 purinoceptors: localization, function and transduction mechanisms. Wiley, New York, p 193–204.

    Google Scholar 

  • Mackay DJ, Esch F, Furthmayr H, Hall A (1997) Rho- and rac-dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for ezrin/radixin/moesin proteins. J Cell Biol 138:927–938

    PubMed  CAS  Google Scholar 

  • Madaule P, Eda M, Watanabe N, FujisawaK MT, Bito H, Ishizaki T, Narumiya S (1998) Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature 394:491–494

    PubMed  CAS  Google Scholar 

  • Maddox AS, Burridge K (2003) RhoA is required for cortical retraction and rigidity during mitotic cell rounding. J Cell Biol 160:255–265

    PubMed  CAS  Google Scholar 

  • Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285:895–898

    PubMed  CAS  Google Scholar 

  • Matsui T, Maeda M, Doi Y, Yonemura S, Amano M, Kaibuchi K, Sa T, Tsukita Sh (1998) Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol 140:647–657

    PubMed  CAS  Google Scholar 

  • Matsumura F (2005) Regulation of myosin II during cytokinesis in higher eukaryotes. Trends Cell Biol 15:371–377

    PubMed  CAS  Google Scholar 

  • Matsumura F, Ono S, Yamakita Y, Totsukawa G, Yamashiro S (1998) Specific localization of serine 19 phosphorylated myosin II during cell locomotion and mitosis of cultured cells. J Cell Biol 140:119–129

    PubMed  CAS  Google Scholar 

  • Mermall V, Post PL, Mooseker MS (1998) Unconventional myosin in cell movement, membrane traffic, and signal transduction. Science 279:527–533

    PubMed  CAS  Google Scholar 

  • Miki H, Miura K, Takenawa T (1996) N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J 15:5326–5335

    PubMed  Google Scholar 

  • Miki H, Jamaguchi H, Suetsugu S, Takenawa T (2000) IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408:732–735

    PubMed  CAS  Google Scholar 

  • Mouneimne G, Soon L, DesMarais V, Sidani M, Song X, Yip SC, Ghosh M, Eddy R, Backer JM, Condeelis J (2004) Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J Cell Biol 166:697–708

    PubMed  CAS  Google Scholar 

  • Moussavi RS, Kelley CA, Adelstein RS (1993) Phosphorylation of vertebrate nonmuscle and smooth muscle myosin heavy chains and light chains. Mol Cell Biochem 127–128:219–227

    PubMed  Google Scholar 

  • Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T (2002) Control of actin reorganization by Slingshot, a family of phosphatase that dephosphorylate of ADF/cofilin. Cell 108:233–246

    PubMed  CAS  Google Scholar 

  • Nobes CD, Hall A (1995) Rho, Rac and Cdc42 regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell 81:53–62

    PubMed  CAS  Google Scholar 

  • Nobes CD, Hall A (1999) Rho GTPases control polarity, protrusion and adhesion during cell movement. J Cell Biol 144:1235–1244

    PubMed  CAS  Google Scholar 

  • Ohta Y, Kousaka K, Nagata-Ohashi K, Ohashi K, Muramoto A, Shima Y, Niwa R, Uemura T, Mizuno K (2003) Differential activities, subcellular distribution and tissue expression patterns of three members of Slingshot family phosphatases that dephosphorylate cofilin. Genes Cells 8:811–824

    PubMed  CAS  Google Scholar 

  • Pak CW, Flynn KC, Bamburg JR (2008) Actin-binding proteins take the reins in growth cones. Nat Rev Neurosci 9:136–147

    PubMed  CAS  Google Scholar 

  • Peterson TS, Camden JM, Wang Y, Seye CI, Wood WG, Sun GY, Erb L, Petris MJ, Weisman GA (2010) P2Y2 nucleotide receptor-mediated responses in brain cells. Mol Neurobiol 41:356–366

    PubMed  CAS  Google Scholar 

  • Piekny A, Werner M, Glotzer M (2005) Cytokinesis: welcome to the Rho zone. Trends Cell Biol 15:651–658

    PubMed  CAS  Google Scholar 

  • Pletjushkina OJ, Rajfur Z, Pomorski P, Oliver TN, Vasiliev JM, Jacobson KA (2001) Induction of cortical oscillations in spreading cells by depolymerization of microtubules. Cell Motil Cytoskeleton 48:235–244

    PubMed  CAS  Google Scholar 

  • Pollard TD, Blanchoin L, Mulins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29:545–576

    PubMed  CAS  Google Scholar 

  • Pomorski P, Watson JM, Haskill S, Jacobson KA (2004) How adhesion, migration, and cytoplasmic calcium transients influence interleukin-1beta mRNA stabilization in human monocytes. Cell Motil Cytoskeleton 57:143–157

    PubMed  CAS  Google Scholar 

  • Pomorski P, Krzemiński P, Wasik A, Wierzbicka K, Barańska J, Kłopocka W (2007) Actin dynamics in Amoeba proteus motility. Protoplasma 231:31–41

    PubMed  CAS  Google Scholar 

  • Ramachandran C, Patil RV, Combrink K, Sharif NA, Srinivas SP (2011) Rho-Rho kinase pathway in the actomyosin contraction and cell-matrix adhesion in immortalized human trabecular meshwork. Mol Vis 17:1877–1890

    PubMed  CAS  Google Scholar 

  • Ridley AJ (2001) Rho GTPases and cell migration. J Cell Sci 114:2713–2722

    PubMed  CAS  Google Scholar 

  • Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    PubMed  CAS  Google Scholar 

  • Ridley AJ, Comoglio PM, Hall A (1995) Regulation of scatter factor/hepatocyte growth factor responses by Ras, Rac, and Rho in MDCK cells. Mol Cell Biol 15:1110–1122

    PubMed  CAS  Google Scholar 

  • Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709

    PubMed  CAS  Google Scholar 

  • Riento K, Ridley AJ (2003) Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4:446–456

    PubMed  CAS  Google Scholar 

  • Royal I, Lamarche-Vane N, Lamorte L, Kaibuchi K, Park M (2000) Activation of cdc42, rac PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates cell colony spreading and dissociation. Mol Biol Cell 11:1709–1725

    PubMed  CAS  Google Scholar 

  • Salhia B, Rutten F, Nakada M, Beaudry C, Berens M, Kwan A, Rutka JT (2005) Inhibition of Rho-kinase affects astrocytoma morphology, motility, and invasion through activation of Rac1. Cancer Res 65:8792–8800

    PubMed  CAS  Google Scholar 

  • Sanders LC, Matsumura F, Bokoch GM, de Lanerolle P (1999) Inhibition of myosin light chain kinase by p21-activated kinase. Science 283:2083–2085

    PubMed  CAS  Google Scholar 

  • Schmitz AA, Govek EE, Bottner B, Van Aelst L (2000) Rho GTPases: signaling, migration, and invasion. Exp Cell Res 261:1–12

    PubMed  CAS  Google Scholar 

  • Sechi AS, Wehland J (2000) The actin cytoskeleton and plasma membrane connection: PtdIns(4,5)P2 influences cytoskeletal protein activity at the plasma membrane. J Cell Sci 113:3685–3695

    PubMed  CAS  Google Scholar 

  • Shestakova EA, Wyckoff J, Jones J, Singer RH, Condeelis J (1999) Correlation of beta-actin messenger RNA localization with metastatic potential in rat adenocarcinoma cell lines. Cancer Res 59:1202–1205

    PubMed  CAS  Google Scholar 

  • Sidani M, Wessels D, Mouneimne G, Ghosh M, Goswami S, Sarmiento C, Wang W, Kuhl S, El-Sibai M, Backer JM, Eddy R, Soll D, Condeelis J (2007) Cofilin determines the migration behavior and turning frequency of metastatic cancer cells. J Cell Biol 179:777–791

    PubMed  CAS  Google Scholar 

  • Sohn RH, Chen J, Koblan KS, Bray PF, Goldschmidt-Clermont PJ (1995) Localization of a binding side for phosphatidylinositol 4,5-biphosphate on human profiling. J Biol Chem 270:21114–21120

    PubMed  CAS  Google Scholar 

  • Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325–1358

    PubMed  CAS  Google Scholar 

  • Song X, Chen X, Yamaguchi H, Mouneimne G, Condeelis JS, Eddy RJ (2006) Initiation of cofilin activity in response to EGF is uncoupled from cofilin phosphorylation and dephosphorylation in carcinoma cells. J Cell Sci 119:2871–2881

    PubMed  CAS  Google Scholar 

  • Stockem W, Kłopocka W (1988) Ameboid movement and related phenomena. Int Rev Cytol 112:137–183

    CAS  Google Scholar 

  • Sun CX, Magalhaes MAO, Glogauer M (2007) Rac1 and Rac2 differentially regulate actin free barbed end formation downstream of the fMLP receptor. J Cell Biol 179:239–245

    PubMed  CAS  Google Scholar 

  • Suplat-Wypych D, Dygas A, Baranska J (2010) 2′, 3′-O-(4-benzoylbenzoyl)-ATP-mediated calcium signaling in rat glioma C6 cells: role of the P2Y(2) nucleotide receptor. Purinergic Signal 6:317–325

    PubMed  CAS  Google Scholar 

  • Sutton TA, Mang HE, Atkinson SJ (2001) Rho-kinase regulates myosin activation in MDCK cells during recovery after ATP depletion. Am J Physiol Renal Physiol 281:F810–F818

    PubMed  CAS  Google Scholar 

  • Takenawa T, Itoh T (2001) Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim Biophys Acta 1533:190–206

    PubMed  CAS  Google Scholar 

  • Targos B, Pomorski P, Krzemiński P, Barańska J, Rędowicz MJ, Kłopocka W (2006) Effect of Rho-associated kinase inhibition on Actin cytoskeleton structure and calcium response in glioma C6 cells. Acta Biochim Pol 53:825–831

    PubMed  CAS  Google Scholar 

  • Toker A (2002) Phosphoinositides and signal transduction. Cell Mol Life Sci 59:761–779

    PubMed  CAS  Google Scholar 

  • Tolias KF, Hartwig JH, Ishihara H, Shibasaki Y, Cantley LC, Carpenter CL (2000) Type Ialpha phosphatidylinositol -4-phasphate 5-kinase mediates Rac-dependent actin assembly. Curr Biol 10:153–156

    PubMed  CAS  Google Scholar 

  • Totsukawa G, Yamakita Y, Yamashiro S, Hartshorne DJ, Sasaki Y, Matsumura F (2000) Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J Cell Biol 150:797–806

    PubMed  CAS  Google Scholar 

  • Tsuji T, Ishizaki T, Okamoto M, Higashida C, Kimura K, Furuyashiki T, Arakawa Y, Birge RB, Nakamoto T, Hirai H, Narumiya S (2002) ROCK and mDia1 antagonize in Rho-dependent Rac activation in Swiss 3T3 fibroblasts. J Cell Biol 157:819–830

    PubMed  CAS  Google Scholar 

  • Van Aelst L, D’Souza-Schorey C (1997) Rho GTPases and signaling network. Genes Dev 11:2295–2322

    PubMed  Google Scholar 

  • van Leeuwen FN, Kain HE, Kammen RA, Michiels F, Kranenburg OW, Collard JG (1997) The guanine nucleotide exchange factor Tiam1 affects neuronal morphology: opposing rols for the small GTPases Rac and Rho. J Cell Biol 139:797–807

    PubMed  CAS  Google Scholar 

  • van Leeuwen FN, van Delft S, Kain HE, van der Kammen RA, Collard JG (1999) Rac regulates phosphorylation of the myosin-II heavy chain, actinomyosin disassembly and cell spreading. Nat Cell Biol 1:242–248

    PubMed  Google Scholar 

  • van Rhee AM, Jacobson KA, Garrad R, Weisman GA, Erb L (1998) P2 receptor modeling and identification of ligand binding sites. In: Turner JT, Weisman GA, Fedan JS (eds) P2 nucleotide receptors. Humana Press, Totowa, pp 135–166

    Google Scholar 

  • van Rheenen J, Song X, van Roosmalen W, Cammer M, Chen X, DesMarais V, Yip S-C, Backer JM, Eddy RJ, Condeelis JS (2007) EGF-induced PIP2 hydrolysis releases and activates cofilin locally in carcinoma cells. J Cell Biol 179:1247–1259

    PubMed  Google Scholar 

  • van Rheenen J, Condeelis J, Glogauer M (2009) A common cofilin activity cycle in invasive tumor cells and inflammatory cells. J Cell Sci 122:305–311

    PubMed  Google Scholar 

  • Wang M, Kong Q, Gonzalez FA, Sun G, Erb L, Seye C, Weisman GA (2005) P2Y2 nucleotide receptor interaction with αv integrin mediates astrocyte migration. J Neurochem 95:630–640

    PubMed  CAS  Google Scholar 

  • Watanabe N, Kato T, Fujita A, Ishizaki T, Narumiya S (1999) Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1:136–143

    PubMed  CAS  Google Scholar 

  • Welch MD, Mullins RD (2000) Cellular control of actin nucleation. Annu Rev Cell Dev Biol 18:247–288

    Google Scholar 

  • Wong WT, Faulkner-Jones B, Sanes JR, Wong RO (2000) Rapid dendritic remodeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. J Neurosci 20:5024–5036

    PubMed  CAS  Google Scholar 

  • Worthylake RA, Lemoine S, Watson JM, Burridge K (2001) RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol 154:147–160

    PubMed  CAS  Google Scholar 

  • Yamashiro S, Totsukawa G, Yamakita Y, Sasaki Y, Madaule P, Ishizaki T, Narumiya S, Matsumura F (2003) Citron kinase, a Rho-dependent kinase, induces diphosphorylation of regulatory light chain of Myosin II. Mol Biol Cell 14:1745–1756

    PubMed  CAS  Google Scholar 

  • Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K (1998) Cofilin phosphorylation by LIM-kinase1 and its role in Rac-mediated actin reorganization. Nature 393:809–812

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanda Kłopocka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kłopocka, W., Korczyński, J., Pomorski, P. (2013). Cytoskeleton and Nucleotide Signaling in Glioma C6 Cells. In: Barańska, J. (eds) Glioma Signaling. Advances in Experimental Medicine and Biology, vol 986. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4719-7_6

Download citation

Publish with us

Policies and ethics