Skip to main content

Adenosine Signaling in Glioma Cells

  • Chapter
  • First Online:
Glioma Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 986))

Abstract

Purines and pyrimidines are fundamental signaling molecules in controlling the survival and proliferation of astrocytes, as well as in mediating cell-to-cell communication between glial cells and neurons in the healthy brain. The malignant transformation of astrocytes towards progressively more aggressive brain tumors (from astrocytoma to anaplastic glioblastoma) leads to modifications in both the survival and cell death pathways which overall confer a growth advantage to malignant cells and resistance to many cytotoxic stimuli. It has been demonstrated, however, that, in astrocytomas, several purinergic (in particular adenosinergic) pathways controlling cell survival and death are still effective and, in some cases, even enhanced, providing invaluable targets for purine-based chemotherapy, that still represents an appropriate pharmacological approach to brain tumors. In this chapter, the current knowledge on both receptor-mediated and receptor-independent adenosine pathways in astrocytomas will be reviewed, with a particular emphasis on the most promising targets which could be translated from in vitro studies to in vivo pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADA:

Adenosine deaminase

Ado:

Adenosine

AK:

Adenosine kinase

APCP:

α,β-Methylene ADP

2-CA:

2-Chloro-adenosine

2-CdA:

2-Chloro-2′-deoxyadenosine

CI-IB-MECA:

2-Chloro-N6-(3-iodobenzyl)-N-methyl-5′-carbamoyladenosine

CNS:

Central Nervous System

8-CPT:

8-Cyclo-pentyl-theophylline

DAG:

Diacylglycerol

dCyd:

2′-Deoxycytidine

ENT:

Equilibrative nucleoside transporter

18F-CPFPX:

8-Cyclopentyl-3-(3-18F-fluoropropyl)-1-propyl-xanthine

GSK-3β:

Glycogen synthase kinase 3β

HIF-1α:

Hypoxia-inducible factor 1 α subunit

IFNγ:

Interferon-gamma

Ino:

Inosine

IP3 :

Inositol-1,4,5-trisphosphate

ITub:

5-Iodotubercidin

MAP kinases:

Mitogen-activated protein kinases

MMP-9:

Matrix metalloproteinase-9

MRS1220:

N-(9-Chloro-2-furan-2-yl-[1,2,4]triazolo[1,5-c]quinazolin-5-yl)-2-phenylacetamide

MRS1706:

N-(4-Acetylphenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy] acetamide

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NECA:

N-Ethyl-carboxamide adenosine

NTPDase:

Nucleoside triphosphate diphosphohydrolase

PET:

Positron emission tomography

PI:

Propidium iodide

PI3K:

Phosphatidylinositol 3-kinase

PKA:

Protein kinase A

PKB/Akt:

Protein kinase B

PKC:

Protein kinase C

PLC:

Phospholipase C

PLD:

Phospholipase D

SAH:

S-Adenosyl-homocysteine

SAM:

S-Adenosyl-methionine

TNFα:

Tumour necrosis factor alpha

VEGF:

Vascular endothelial growth factor

zIETD-fmk:

z-Ile-Glu(OMe)-Thr-Asp(OMe)-fluoromethylketone

zLEHD-fmk:

z-Leu-Glu(OMe)-His-Asp(OMe)-fluoromethylketone

zVAD-fmk:

z-Val-Ala-Asp(OMe)-fluoromethylketone

zVDVAD-fmk:

z-Val-Asp(OMe)-Val-Ala-Asp(OMe)-fluoromethylketone.

References

  • Abbracchio MP, Saffrey MJ, Höpker V, Burnstock G (1994) Modulation of astroglial cell proliferation by analogues of adenosine and ATP in primary cultures of rat striatum. Neuroscience 59:67–76

    Article  PubMed  CAS  Google Scholar 

  • Abbracchio MP, Brambilla R, Ceruti S, Kim HO, von Lubitz DKJE, Jacobson KA, Cattabeni F (1995a) G protein-dependent activation of phospholipase C by adenosine A3 receptors in rat brain. Mol Pharmacol 48:1038–1045

    PubMed  CAS  Google Scholar 

  • Abbracchio MP, Ceruti S, Barbieri D, Franceschi C, Malorni W, Biondo L, Burnstock G, Cattabeni F (1995b) A novel action for adenosine: apoptosis of astroglial cells in rat brain primary cultures. Biochem Biophys Res Commun 213:908–915

    Article  PubMed  CAS  Google Scholar 

  • Abbracchio MP, Rainaldi G, Giammarioli AM, Ceruti S, Brambilla R, Cattabeni F, Barbieri D, Franceschi C, Jacobson KA, Malorni W (1997) The A3 adenosine receptor mediates cell spreading, reorganization of actin cytoskeleton, and distribution of Bcl-XL: studies in human astroglioma cells. Biochem Biophys Res Commun 241:297–304

    Article  PubMed  CAS  Google Scholar 

  • Abbracchio MP, Ceruti S, Brambilla R, Barbieri D, Camurri A, Franceschi C, Giammarioli AM, Jacobson KA, Cattabeni F, Malorni W (1998) Adenosine A3 receptors and viability of astrocytes. Drug Dev Res 45:379–386

    Article  CAS  Google Scholar 

  • Abbracchio MP, Camurri A, Ceruti S, Cattabeni F, Falzano L, Giammarioli AM, Jacobson KA, Trincavelli L, Martini C, Malorni W, Fiorentini C (2001) The A3 adenosine receptor induces cytoskeleton rearrangement in human astrocytoma cells via a specific action on Rho proteins. Ann NY Acad Sci 939:63–73

    Article  PubMed  CAS  Google Scholar 

  • Appel E, Kazimirsky G, Ashkenazi E, Kim SG, Jacobson KA, Brodie C (2001) Roles of BCL-2 and caspase 3 in the adenosine A3 receptor-induced apoptosis. J Mol Neurosci 17:285–292

    Article  PubMed  CAS  Google Scholar 

  • Bauer A, Langen KJ, Bidmon H, Holschbach MH, Weber S, Olson RA, Coenen HH, Zilles K (2005) 18F-Cyclopentyl-3(3-18F-Fluoropropyl)-1-Propyl-xanthine PET identifies changes in cerebral A1Adenosine receptor density caused by glioma invasion. J Nucl Med 46:450–454

    PubMed  CAS  Google Scholar 

  • Bavaresco L, Bernardi A, Braganhol E, Cappellari AR, Rockenbach L, Farias PF, Wink MR, Delgado-Cañedo A, Battastini AM (2008) The role of ecto-5′-nucleotidase/CD73 in glioma cell line proliferation. Mol Cell Biochem 319:61–68

    Article  PubMed  CAS  Google Scholar 

  • Bernardi A, Bavaresco L, Wink MR, Jacques-Silva MC, Delgado-Cañedo A, Lenz G, Battastini AM (2007) Indomethacin stimulates activity and expression of ecto-5′-nucleotidase/CD73 in glioma cell lines. Eur J Pharmacol 569:8–15

    Article  PubMed  CAS  Google Scholar 

  • Bratton SB, Salvesen GS (2010) Regulation of the Apaf-1-caspase-9 apoptosome. J Cell Sci 123:3209–3214

    Article  PubMed  CAS  Google Scholar 

  • Cappellari AR, Vasques GJ, Bavaresco L, Braganhol E, Battastini AM (2012) Involvement of ecto-5′-nucleotidase/CD73 in U138MG glioma cell adhesion. Mol Cell Biochem 359:315–322

    Google Scholar 

  • Castillo AC, Albasanz JL, Fernández M, Martìn M (2007) Endogenous expression of adenosine A1, A2 and A3 receptors in rat C6 glioma cells. Neurochem Res 32:1056–1070

    Article  PubMed  CAS  Google Scholar 

  • Castillo CA, León D, Ruiz MA, Albasanz JL, Martín M (2008) Modulation of adenosine A1 and A2A receptors in C6 glioma cells during hypoxia: involvement of endogenous adenosine. J Neurochem 105:2315–2329

    Article  PubMed  CAS  Google Scholar 

  • Ceruti S, Barbieri D, Veronese E, Cattabeni F, Cossarizza A, Giammarioli AM, Malorni W, Franceschi C, Abbracchio MP (1997) Different pathways of apoptosis revealed by 2-chloro-adenosine and deoxy-D-ribose in mammalian astroglial cells. J Neurosci Res 47:372–383

    Article  PubMed  CAS  Google Scholar 

  • Ceruti S, Franceschi C, Barbieri D, Malorni W, Camurri A, Giammarioli AM, Ambrosini A, Racagni G, Cattabeni F, Abbracchio MP (2000) Apoptosis induced by 2-chloro-adenosine and 2-chloro-2′-deoxy-adenosine in a human astrocytoma cell line: differential mechanisms and possible clinical relevance. J Neurosci Res 60:388–400

    Article  PubMed  CAS  Google Scholar 

  • Ceruti S, Mazzola A, Beltrami E, Passera D, Piantoni E, Cattabeni F, Abbracchio MP (2003a) Intracellular phosphorylation of chloro-adenosine analogs is a pre-requisite for activation of caspase-3 and induction of apoptosis in human astrocytoma cells. Drug Dev Res 58:396–404

    Article  CAS  Google Scholar 

  • Ceruti S, Beltrami E, Matarrese P, Mazzola A, Cattabeni F, Malorni W, Abbracchio MP (2003b) A key role for caspase-2 and caspase-3 in the apoptosis induced by 2-chloro-2′-deoxy-adenosine (cladribine) and 2-chloro-adenosine in human astrocytoma cells. Mol Pharmacol 63:1437–1447

    Article  PubMed  CAS  Google Scholar 

  • Ceruti S, Mazzola A, Abbracchio MP (2005) Resistance of human astrocytoma cells to apoptosis induced by mitochondria-damaging agents: possible implications for anticancer therapy. J Pharmacol Exp Ther 314:825–837

    Article  PubMed  CAS  Google Scholar 

  • Ceruti S, Mazzola A, Abbracchio MP (2006) Proteasome inhibitors potentiate etoposide-induced cell death in human astrocytoma cells bearing a mutated p53 isoform. J Pharmacol Exp Ther 319:1424–1434

    Article  PubMed  CAS  Google Scholar 

  • Dehnhardt M, Palm C, Vieten A, Bauer A, Pietrzyk U (2007) Quantifying the A1AR distribution in peritumoural zones around experimental F98 and C6 rat brain tumours. J Neurooncol 85:49–63

    Article  PubMed  CAS  Google Scholar 

  • Dighiero G (1996) Adverse and beneficial immunological effects of purine nucleoside analogues. Hematol Cell Ther 38:S75–S81

    PubMed  CAS  Google Scholar 

  • Fiebich BL, Akundi RS, Biber K, Hamke M, Schmidt C, Butcher RD, van Calker D, Willmroth F (2005) IL-6 expression induced by adenosine A2b receptor stimulation in U373 MG cells depends on p38 mitogen activated kinase and protein kinase C. Neurochem Int 46:501–512

    Article  PubMed  CAS  Google Scholar 

  • Fishman P, Bar-Yehuda S, Madi L, Cohn I (2002) A3 adenosine receptor as a target for cancer therapy. Anti-Cancer Drugs 13:437–443

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB (2010) Adenosine receptors as drug targets. Exp Cell Res 316:1284–1288

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Ijzerman AP, Jacobson KA, Linden J, Müller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors – an update. Pharmacol Rev 63:1–34

    Article  PubMed  CAS  Google Scholar 

  • Genini D, Adachi S, Chao Q, Rose DW, Carrera CJ, Cottam HB, Carson DA, Leoni LM (2000) Deoxyadenosine analogs induce programmed cell death in chronic lymphocytic leukemia cells by damaging the DNA and by directly affecting the mitochondria. Blood 96:3537–3543

    PubMed  CAS  Google Scholar 

  • Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA (2008) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117:123–140

    Article  PubMed  CAS  Google Scholar 

  • Gessi S, Sacchetto V, Fogli E, Merighi S, Varani K, Baraldi PG, Tabrizi MA, Leung E, Maclennan S, Borea PA (2010) Modulation of metalloproteinase-9 in U87MG glioblastoma cells by A3 adenosine receptors. Biochem Pharmacol 79:1483–1495

    Article  PubMed  CAS  Google Scholar 

  • Giagkousiklidis S, Vogler M, Westhoff MA, Kasperczyk H, Debatin KM, Fulda S (2005) Sensitization for gamma-irradiation-induced apoptosis by second mitochondria-derived activator of caspase. Cancer Res 65:10502–10513

    Article  PubMed  CAS  Google Scholar 

  • Golomb HM (2011) Fifty years of hairy cell leukemia treatments. Leuk Lymphoma 52:3–5

    Article  PubMed  CAS  Google Scholar 

  • Isakovic A, Harhaji L, Dacevic M, Trajkovic V (2008) Adenosine rescues glioma cells from cytokine-induced death by interfering with the signaling network involved in nitric oxide production. Eur J Pharmacol 591:106–113

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA (1998) Adenosine A3 receptors: novel ligands and paradoxical effects. Trends Pharmacol Sci 19:184–191

    Article  PubMed  CAS  Google Scholar 

  • Kelly GL, Strasser A (2011) The essential role of evasion from cell death in cancer. Adv Cancer Res 111:39–96

    Article  PubMed  CAS  Google Scholar 

  • Killestein J, Rudick RA, Polman CH (2011) Oral treatment for multiple sclerosis. Lancet Neurol 10:1026–1034

    Article  PubMed  CAS  Google Scholar 

  • King AE, Ackley MA, Cass CE, Young JD, Baldwin SA (2006) Nucleoside transporters: from scavengers to novel therapeutic targets. Trends Pharmacol Sci 27:416–425

    Article  PubMed  CAS  Google Scholar 

  • Lazarowski ER, Sesma JI, Seminario-Vidal L, Kreda SM (2011) Molecular mechanisms of purine and pyrimidine nucleotide release. Adv Pharmacol 61:221–261

    Article  PubMed  CAS  Google Scholar 

  • Lee JK, Won JS, Singh AK, Singh I (2005) Adenosine kinase inhibitor attenuates the expression of inducible nitric oxide synthase in glial cells. Neuropharmacology 48:151–160

    Article  PubMed  CAS  Google Scholar 

  • Liliemark J (1997) The clinical pharmacokinetics of cladribine. Clin Pharmacokinet 32:120–131

    Article  PubMed  CAS  Google Scholar 

  • Linden J, Auchampach JA, Jin X, Figler RA (1998) The structure and function of A1 and A2B adenosine receptors. Life Sci 62:1519–1524

    Article  PubMed  CAS  Google Scholar 

  • Malorni W, Rainaldi G, Rivabene R, Santini MT (1994) Different susceptibilities to cell death induced by t-butylhydroperoxide could depend upon cell histotype-associated growth features. Cell Biol Toxicol 10:207–218

    Article  PubMed  CAS  Google Scholar 

  • Melani A, De Micheli E, Pinna G, Alfieri A, Corte LD, Pedata F (2003) Adenosine extracellular levels in human brain gliomas: an intraoperative microdialysis study. Neurosci Lett 346:93–96

    Article  PubMed  CAS  Google Scholar 

  • Melani A, Corti F, Stephan H, Müller CE, Donati C, Bruni P, Vannucchi MG, Pedata F (2012) Ecto-ATPase inhibition: ATP and adenosine release under physiological and ischemic in vivo conditions in the rat striatum. Exp Neurol 233:193–204

    Google Scholar 

  • Merighi S, Mirandola P, Varani K, Gessi S, Leung E, Baraldi PG, Tabrizi MA, Borea PA (2003) A glance at adenosine receptors: novel target for antitumor therapy. Pharmacol Ther 100:31–48

    Article  PubMed  CAS  Google Scholar 

  • Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, Maclennan S, Borea PA (2006) Adenosine modulates vascular endothelial growth factor expression via hypoxia-inducible factor-1 in human glioblastoma cells. Biochem Pharmacol 72:19–31

    Article  PubMed  CAS  Google Scholar 

  • Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, Maclennan S, Baraldi PG, Borea PA (2007) Hypoxia inhibits paclitaxel-induced apoptosis through adenosine-mediated phosphorylation of bad in glioblastoma cells. Mol Pharmacol 72:162–172

    Article  PubMed  CAS  Google Scholar 

  • Morelli M, Carta AR, Kachroo A, Schwarzschild MA (2010) Pathophysiological roles for purines: adenosine, caffeine and urate. Prog Brain Res 183:183–208

    Article  PubMed  CAS  Google Scholar 

  • Morrone FB, Jacques-Silva MC, Horn AP, Bernardi A, Schwartsmann G, Rodnight R, Lenz G (2003) Extracellular nucleotides and nucleosides induce proliferation and increase nucleoside transport in human glioma cell lines. J Neurooncol 64:211–218

    Article  PubMed  Google Scholar 

  • Nomura Y, Inanami O, Takahashi K, Matsuda A, Kuwabara M (2000) 2-Chloro-2′-deoxyadenosine induces apoptosis through the Fas/Fas ligand pathway in human leukemia cell line MOLT-4. Leukemia 14:299–306

    Article  PubMed  CAS  Google Scholar 

  • Ohkubo S, Nagata K, Nakahata N (2007) Adenosine uptake-dependent C6 cell growth inhibition. Eur J Pharmacol 577:35–43

    Article  PubMed  CAS  Google Scholar 

  • Palmer TM, Stiles GL (2000) Identification of threonine residues controlling the agonist-dependent phosphorylation and desensitization of the rat A(3) adenosine receptor. Mol Pharmacol 57:539–545

    PubMed  CAS  Google Scholar 

  • Pardridge WM, Yoshikawa T, Kang YS, Miller LP (1994) Blood-brain barrier transport and brain metabolism of adenosine and adenosine analogs. J Pharmacol Exp Ther 268:14–18

    PubMed  CAS  Google Scholar 

  • Rajkumar SV, Burch PA, Nair S, Dinapoli RP, Scheithauer B, O’Fallon JR, Etzell PS, Leitch JM, Morton RF, Marks RS (1999) Phase II North Central Cancer Treatment Group study of 2-chlorodeoxyadenosine in patients with recurrent glioma. Am J Clin Oncol 22:168–171

    Article  PubMed  CAS  Google Scholar 

  • Sai K, Yang D, Yamamoto H, Fujikawa H, Yamamoto S, Nagata T, Saito M, Yamamura T, Nishizaki T (2006) A(1) adenosine receptor signal and AMPK involving caspase-9/-3 activation are responsible for adenosine-induced RCR-1 astrocytoma cell death. Neurotoxicology 27:458–467

    Article  PubMed  CAS  Google Scholar 

  • Sands WA, Martin AF, Strong EW, Palmer TM (2004) Specific inhibition of nuclear factor-kappaB-dependent inflammatory responses by cell type-specific mechanisms upon A2A adenosine receptor gene transfer. Mol Pharmacol 66:1147–1159

    Article  PubMed  CAS  Google Scholar 

  • Schulte G, Fredholm BB (2000) Human adenosine A(1), A(2A), A(2B), and A(3) receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. Mol Pharmacol 58:477–482

    PubMed  CAS  Google Scholar 

  • Sinclair CJ, LaRivière CG, Young JD, Cass CE, Baldwin SA, Parkinson FE (2000) Purine uptake and release in rat C6 glioma cells: nucleoside transport and purine metabolism under ATP-depleting conditions. J Neurochem 75:1528–1538

    Article  PubMed  CAS  Google Scholar 

  • Taliani S, La Motta C, Mugnaini L, Simorini F, Salerno S, Marini AM, Da Settimo F, Cosconati S, Cosimelli B, Greco G, Limongelli V, Marinelli L, Novellino E, Ciampi O, Daniele S, Trincavelli ML, Martini C (2010) Novel N2-substituted pyrazolo[3,4-d]pyrimidine adenosine A3 receptor antagonists: inhibition of A3-mediated human glioblastoma cell proliferation. J Med Chem 53:3954–3963

    Article  PubMed  CAS  Google Scholar 

  • Tapper E, Schmelzle M, Eltzschig HK, Robson SC (2012) Erratum to: role of CD73 and extracellular adenosine in disease. Purinergic Signal 8:339

    Article  CAS  Google Scholar 

  • Trincavelli ML, Tuscano D, Marroni M, Falleni A, Gremigni V, Ceruti S, Abbracchio MP, Jacobson KA, Cattabeni F, Martini C (2002) A3 adenosine receptors in human astrocytoma cells: agonist-mediated desensitization, internalization, and down-regulation. Mol Pharmacol 62:1373–1384

    Article  PubMed  CAS  Google Scholar 

  • Trincavelli ML, Marroni M, Tuscano D, Ceruti S, Mazzola A, Mitro N, Abbracchio MP, Martini C (2004) Regulation of A2B adenosine receptor functioning by tumour necrosis factor a in human astroglial cells. J Neurochem 91:1180–1190

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P, Thews O, Hoeckel M (2001) Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol 18:243–259

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Fan J, Thompson LF, Zhang Y, Shin T, Curiel TJ, Zhang B (2011) CD73 has distinct roles in non hematopoietic and hematopoietic cells to promote tumor growth in mice. J Clin Invest 121:2371–2382

    Article  PubMed  CAS  Google Scholar 

  • Westphal M, Lamszus K (2011) The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 12:495–508

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Ceruti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ceruti, S., Abbracchio, M.P. (2013). Adenosine Signaling in Glioma Cells. In: Barańska, J. (eds) Glioma Signaling. Advances in Experimental Medicine and Biology, vol 986. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4719-7_2

Download citation

Publish with us

Policies and ethics