Skip to main content

Cannabinoid Signaling in Glioma Cells

  • Chapter
  • First Online:
Glioma Signaling

Abstract

Cannabinoids are a group of structurally heterogeneous but pharmacologically related compounds, including plant-derived cannabinoids, synthetic substances and endogenous cannabinoids, such as anandamide and 2-arachidonoylglycerol. Cannabinoids elicit a wide range of central and peripheral effects mostly mediated through cannabinoid receptors. There are two types of specific Gi/o-protein-coupled receptors cloned so far, called CB1 and CB2, although an existence of additional cannabinoid-binding receptors has been suggested. CB1 and CB2 differ in their predicted amino acid sequence, tissue distribution, physiological role and signaling mechanisms. Significant alterations of a balance in the cannabinoid system between the levels of endogenous ligands and their receptors occur during malignant transformation in various types of cancer, including gliomas. Cannabinoids exert anti-proliferative action in tumor cells. Induction of cell death by cannabinoid treatment relies on the generation of a pro-apoptotic sphingolipid ceramide and disruption of signaling pathways crucial for regulation of cellular proliferation, differentiation or apoptosis. Increased ceramide levels lead also to ER-stress and autophagy in drug-treated glioblastoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AEA:

Anandamide, arachidonoylethanolamide

2-AG:

2-Arachidonoylglycerol

Akt:

Protein kinase B/Akt

ATF4:

Activating transcription factor 4

cAMP:

Cylic adenosine monophosphate

CB1:

Cannabinoid receptor type 1

CB2:

Cannabinoid receptor type 2

CHOP:

The C/EBP-homologous protein

DAG:

Diacylglycerol

eIF2α:

Eukaryotic translation initiation factor 2α

ER:

Endoplasmic reticulum

ERK1/2:

Extracellular signal-regulated kinase 1/2

FAAH:

Fatty acid amide hydrolase

IP3 :

Inositol 1,4,5-trisphosphate

LPS:

Lipopolysacharide

MAPK:

Mitogen-activated protein kinase

MEK:

MAP kinase-ERK kinase

MGL:

Monoacylglycerol lipase

mTORC1:

Mammalian target of rapamycin, complex 1

NAPE:

N-Arachidonylphosphatidylethanolamide

PI3K:

Phosphatidylinositol 3-kinase

PIP2 :

Phosphatidylinositol 4,5-bisphosphate

PKA:

Protein kinase A

PKC:

Protein kinase C

PLC:

Phospholipase C

Δ9-THC:

(−)-trans-Δ9-Tetrahydrocannabinol

TRB3:

Pseudo-kinase tribbles homologue 3

TRPV1:

Transient receptor potential cation channel subfamily V member 1, capsaicin or vanilloid receptor

WIN55,212-2:

Synthetic cannabinoid

References

  • Caffarel MM, Sarrio D, Palacios J, Guzman M, Sanchez C (2006) Delta9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation. Cancer Res 66:6615–6621

    Article  PubMed  CAS  Google Scholar 

  • Carracedo A, Gironella M, Lorente M, Garcia S, Guzman M, Velasco G, Iovanna JL (2006a) Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer Res 66:6748–6755

    Article  PubMed  CAS  Google Scholar 

  • Carracedo A, Lorente M, Egia A, Blazquez C, Garcia S, Giroux V, Malicet C, Villuendas R, Gironella M, Gonzalez-Feria L, Piris MA, Iovanna JL, Guzman M, Velasco G (2006b) The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell 9:301–312

    Article  PubMed  CAS  Google Scholar 

  • De Jesus ML, Hostalot C, Garibi JM, Salles J, Meana JJ, Callado LF (2010) Opposite changes in cannabinoid CB1 and CB2 receptor expression in human gliomas. Neurochem Int 56:829–833

    Article  PubMed  Google Scholar 

  • Duntsch C, Divi MK, Jones T, Zhou Q, Krishnamurthy M, Boehm P, Wood G, Sills A, Ii BM (2006) Safety and efficacy of a novel cannabinoid chemotherapeutic, KM-233, for the treatment of high-grade glioma. J Neurooncol 77(2):143–152

    Google Scholar 

  • Ellert-Miklaszewska A, Kaminska B, Konarska L (2005) Cannabinoids down-regulate PI3K/Akt and Erk signalling pathways and activate proapoptotic function of Bad protein. Cell Signal 17:25–37

    Article  PubMed  CAS  Google Scholar 

  • Ellert-Miklaszewska A, Grajkowska W, Gabrusiewicz K, Kaminska B, Konarska L (2007) Distinctive pattern of cannabinoid receptor type II (CB2) expression in adult and pediatric brain tumors. Brain Res 1137:161–169

    Article  PubMed  CAS  Google Scholar 

  • Galve-Roperh I, Sanchez C, Cortes ML, del Pulgar TG, Izquierdo M, Guzman M (2000) Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat Med 6:313–319

    Article  PubMed  CAS  Google Scholar 

  • Gomez del Pulgar T, Velasco G, Sanchez C, Haro A, Guzman M (2002) De novo-synthesized ceramide is involved in cannabinoid-induced apoptosis. Biochem J 363:183–188

    Article  PubMed  CAS  Google Scholar 

  • Gomez O, Arevalo-Martin A, Garcia-Ovejero D, Ortega-Gutierrez S, Cisneros JA, Almazan G, Sanchez-Rodriguez MA, Molina-Holgado F, Molina-Holgado E (2010) The constitutive production of the endocannabinoid 2-arachidonoylglycerol participates in oligodendrocyte differentiation. Glia 58:1913–1927

    Article  PubMed  Google Scholar 

  • Gong JP, Onaivi ES, Ishiguro H, Liu QR, Tagliaferro PA, Brusco A, Uhl GR (2006) Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res 1071:10–23

    Article  PubMed  CAS  Google Scholar 

  • Guzman M (2003) Cannabinoids: potential anticancer agents. Nat Rev Cancer 3:745–755

    Article  PubMed  CAS  Google Scholar 

  • Guzman M, Sanchez C, Galve-Roperh I (2001) Control of the cell survival/death decision by cannabinoids. J Mol Med 78:613–625

    Article  PubMed  CAS  Google Scholar 

  • Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202

    Article  PubMed  CAS  Google Scholar 

  • Kapoor GS, O’Rourke DM (2003) Receptor tyrosine kinase signaling in gliomagenesis: pathobiology and therapeutic approaches. Cancer Biol Ther 2:330–342

    PubMed  CAS  Google Scholar 

  • Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  PubMed  CAS  Google Scholar 

  • Mackie K (2006) Cannabinoid receptors as therapeutic targets. Annu Rev Pharmacol Toxicol 46:101–122

    Article  PubMed  CAS  Google Scholar 

  • Mackie K, Stella N (2006) Cannabinoid receptors and endocannabinoids: evidence for new players. AAPS J 8:E298–306

    PubMed  Google Scholar 

  • Massi P, Vaccani A, Ceruti S, Colombo A, Abbracchio MP, Parolaro D (2004) Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines. J Pharmacol Exp Ther 308:838–845

    Article  PubMed  CAS  Google Scholar 

  • McAllister SD, Chan C, Taft RJ, Luu T, Abood ME, Moore DH, Aldape K, Yount G (2005) Cannabinoids selectively inhibit proliferation and induce death of cultured human glioblastoma multiforme cells. J Neurooncol 74:31–40

    Article  PubMed  CAS  Google Scholar 

  • Molina-Holgado E, Vela JM, Arevalo-Martin A, Almazan G, Molina-Holgado F, Borrell J, Guaza C (2002) Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling. J Neurosci 22:9742–9753

    PubMed  CAS  Google Scholar 

  • Pazos MR, Nunez E, Benito C, Tolon RM, Romero J (2005) Functional neuroanatomy of the endocannabinoid system. Pharmacol Biochem Behav 81:239–247

    Article  PubMed  CAS  Google Scholar 

  • Petersen G, Moesgaard B, Schmid PC, Schmid HH, Broholm H, Kosteljanetz M, Hansen HS (2005) Endocannabinoid metabolism in human glioblastomas and meningiomas compared to human non-tumour brain tissue. J Neurochem 93:299–309

    Article  PubMed  CAS  Google Scholar 

  • Salazar M, Carracedo A, Salanueva IJ, Hernandez-Tiedra S, Lorente M, Egia A, Vazquez P, Blazquez C, Torres S, Garcia S, Nowak J, Fimia GM, Piacentini M, Cecconi F, Pandolfi PP, Gonzalez-Feria L, Iovanna JL, Guzman M, Boya P, Velasco G (2009) Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 119:1359–1372

    Article  PubMed  CAS  Google Scholar 

  • Sanchez C, Velasco G, Guzman M (1997) Delta9-tetrahydrocannabinol stimulates glucose utilization in C6 glioma cells. Brain Res 767:64–71

    Article  PubMed  CAS  Google Scholar 

  • Sanchez C, Galve-Roperh I, Canova C, Brachet P, Guzman M (1998) Delta9-tetrahydrocannabinol induces apoptosis in C6 glioma cells. FEBS Lett 436:6–10

    Article  PubMed  CAS  Google Scholar 

  • Sanchez C, de Ceballos ML, del Pulgar TG, Rueda D, Corbacho C, Velasco G, Galve-Roperh I, Huffman JW, Ramon Y, Cajal S, Guzman M (2001) Inhibition of glioma growth in vivo by selective activation of the CB(2) cannabinoid receptor. Cancer Res 61:5784–5789

    PubMed  CAS  Google Scholar 

  • Sarfaraz S, Afaq F, Adhami VM, Mukhtar H (2005) Cannabinoid receptor as a novel target for the treatment of prostate cancer. Cancer Res 65:1635–1641

    Article  PubMed  CAS  Google Scholar 

  • Schley M, Stander S, Kerner J, Vajkoczy P, Schupfer G, Dusch M, Schmelz M, Konrad C (2009) Predominant CB2 receptor expression in endothelial cells of glioblastoma in humans. Brain Res Bull 79:333–337

    Article  PubMed  CAS  Google Scholar 

  • Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  PubMed  Google Scholar 

  • Stella N (2004) Cannabinoid signaling in glial cells. Glia 48:267–277

    Article  PubMed  Google Scholar 

  • Valenzano KJ, Tafesse L, Lee G, Harrison JE, Boulet JM, Gottshall SL, Mark L, Pearson MS, Miller W, Shan S, Rabadi L, Rotshteyn Y, Chaffer SM, Turchin PI, Elsemore DA, Toth M, Koetzner L, Whiteside GT (2005) Pharmacological and pharmacokinetic characterization of the cannabinoid receptor 2 agonist, GW405833, utilizing rodent models of acute and chronic pain, anxiety, ataxia and catalepsy. Neuropharmacology 48:658–672

    Article  PubMed  CAS  Google Scholar 

  • Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, Stella N, Makriyannis A, Piomelli D, Davison JS, Marnett LJ, Di Marzo V, Pittman QJ, Patel KD, Sharkey KA (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310:329–332

    Article  PubMed  Google Scholar 

  • Velasco G, Carracedo A, Blazquez C, Lorente M, Aguado T, Haro A, Sanchez C, Galve-Roperh I, Guzman M (2007) Cannabinoids and gliomas. Mol Neurobiol 36:60–67

    Article  PubMed  CAS  Google Scholar 

  • Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87:619–628

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Ellert-Miklaszewska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ellert-Miklaszewska, A., Ciechomska, I., Kaminska, B. (2013). Cannabinoid Signaling in Glioma Cells. In: Barańska, J. (eds) Glioma Signaling. Advances in Experimental Medicine and Biology, vol 986. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4719-7_11

Download citation

Publish with us

Policies and ethics