Skip to main content

Multiple Binding Partners

  • Chapter
  • First Online:
GAPDH: Biological Properties and Diversity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 985))

Abstract

GAPDH interacts with a plethora of diverse cellular proteins. The network of interacting partners, or interactome, is presented for GAPDH with the interacting molecules grouped into specific functional and structural categories. By organizing the binding partners in this way, certain common structural features are beginning to surface, such as acidic dipeptide sequences that are found in several of these binding proteins. Additionally, the consensus sequences for target polynucleotides are being brought to light. The categories, which are presented according to function, offer an opportunity for research into the corresponding structural correlates to these interactions. Recent discoveries of interacting proteins have revealed novel relationships that are generating emerging mechanisms. Proteins that are associated with age-related neurodegenerative diseases appear to be particularly prone to binding GAPDH, suggesting that GAPDH may be playing a role in these diseases. Neurodegenerative diseases that are discussed are the conformational diseases of aging, suggesting that GAPDH may be a global sensor for cellular conformational stress. In addition to GAPDH’s oxidoreductase activity, several other enzymatic functions have been discovered, including peroxidase, nitrosylase, mono-ADP-ribosylase and kinase activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song S, Finkel T (2007) GAPDH and the search for alternative energy. Nat Cell Biol 9:869–870

    PubMed  CAS  Google Scholar 

  2. Andrade J, Pearce ST, Zhao H et al (2004) Interactions among p22, glyceraldehyde-3-phosphate dehydrogenase and microtubules. Biochem J 384:327–336

    PubMed  CAS  Google Scholar 

  3. Caswell AH, Corbett AM (1985) Interaction of glyceraldehyde-3-phosphate dehydrogenase with isolated microsomal subfractions of skeletal muscle. J Biol Chem 260:6892–6898

    PubMed  CAS  Google Scholar 

  4. Lee PY, Bae KH, Jeong DG et al (2011) The S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase 2 is reduced by interaction with glutathione peroxidase 3 in Saccharomyces cerevisiae. Mol Cells 31:255–259

    PubMed  CAS  Google Scholar 

  5. Sen N, Hara MR, Kornberg MD et al (2008) Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol 10:866–873

    PubMed  CAS  Google Scholar 

  6. Giot L, Bader JS, Brouwer C et al (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736

    PubMed  CAS  Google Scholar 

  7. Kawamoto RM, Caswell AH (1986) Autophosphorylation of glyceraldehydephosphate dehydrogenase and phosphorylation of protein from skeletal muscle microsomes. Biochemistry 25:657–661

    PubMed  CAS  Google Scholar 

  8. Wakasugi K, Nakano T, Morishima I (2005) Oxidative stress-responsive intracellular regulation specific for the angiostatic form of human tryptophanyl-tRNA synthetase. Biochemistry 44:225–232

    PubMed  CAS  Google Scholar 

  9. Rakitina TV, Bogatova OV, Smirnova EV et al (2010) Haponin (eIF1AD) interacts with glyceraldehyde 3-phosphate dehydrogenase in the CHO-K1 cell line. Bioorg Khim 36:312–318

    PubMed  CAS  Google Scholar 

  10. Smirnova EV, Rakitina TV, Bogatova OV et al (2011) Novel protein haponin regulates cellular response to oxidative stress. Dokl Biochem Biophys 440:225–227

    PubMed  CAS  Google Scholar 

  11. Butterfield DA, Hardas SS, Lange ML (2010) Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer’s disease: many pathways to neurodegeneration. J Alzheimers Dis 20:369–393

    PubMed  CAS  Google Scholar 

  12. Seki T, Yoshino KI, Tanaka S et al (2012) Establishment of a novel fluorescence-based method to evaluate chaperone-mediated autophagy in a single neuron. PLoS One 7:e31232

    PubMed  CAS  Google Scholar 

  13. Chu H, Low PS (2006) Mapping of glycolytic enzyme-binding sites on human erythrocyte band 3. Biochem J 400:143–151

    PubMed  CAS  Google Scholar 

  14. Waingeh VF, Gustafson CD, Kozliak EI et al (2006) Glycolytic enzyme interactions with yeast and skeletal muscle F-actin. Biophys J 90:1371–1384

    PubMed  CAS  Google Scholar 

  15. Méjean C, Pons F, Benyamin Y et al (1989) Antigenic probes locate binding sites for the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, aldolase and phosphofructokinase on the actin monomer in microfilaments. Biochem J 264:671–677

    PubMed  Google Scholar 

  16. Guingab-Cagmat JD, Stevens SM Jr, Ratliff MV et al (2011) Identification of tyrosine nitration in UCH-L1 and GAPDH. Electrophoresis 32:1692–1705

    PubMed  CAS  Google Scholar 

  17. Causier B, Davies B (2002) Analysing protein-protein interactions with the yeast two-hybrid system. Plant Mol Biol 50:855–870

    PubMed  CAS  Google Scholar 

  18. Scharf BE (2010) Summary of useful methods for two-component system research. Curr Opin Microbiol 13:246–252

    PubMed  CAS  Google Scholar 

  19. Day RN, Periasamy A, Schaufele F (2001) Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods 25:4–18

    PubMed  CAS  Google Scholar 

  20. Choei H, Sasaki N, Takeuchi M et al (2004) Glyceraldehyde-derived advanced glycation end products in Alzheimer’s disease. Acta Neuropathol 108:189–193

    PubMed  CAS  Google Scholar 

  21. Fitzgerald C, Swearengin TA, Yeargans G et al (2000) Non-enzymatic glycosylation (or glycation) and inhibition of the pig heart cytosolic aspartate aminotransferase by glyceraldehyde 3-phosphate. J Enzyme Inhib 15:79–89

    PubMed  CAS  Google Scholar 

  22. Seidler NW (2000) Carnosine prevents the glycation-induced changes in electrophoretic mobility of aspartate aminotransferase. J Biochem Mol Toxicol 14:215–220

    PubMed  CAS  Google Scholar 

  23. Seidler NW, Seibel I (2000) Glycation of aspartate aminotransferase and conformational flexibility. Biochem Biophys Res Commun 277:47–50

    PubMed  CAS  Google Scholar 

  24. Seidler NW, Yeargans GS (2002) Effects of thermal denaturation on protein glycation. Life Sci 70:1789–1799

    PubMed  CAS  Google Scholar 

  25. Li G, Chang M, Jiang H et al (2011) Proteomics analysis of methylglyoxal-induced neurotoxic effects in SH-SY5Y cells. Cell Biochem Funct 29:30–35

    PubMed  Google Scholar 

  26. Beeri MS, Moshier E, Schmeidler J et al (2011) Serum concentration of an inflammatory glycotoxin, methylglyoxal, is associated with increased cognitive decline in elderly individuals. Mech Ageing Dev 132:583–587

    PubMed  CAS  Google Scholar 

  27. Bélanger M, Yang J, Petit JM et al (2011) Role of the glyoxalase system in astrocyte-mediated neuroprotection. J Neurosci 31:18338–18352

    PubMed  Google Scholar 

  28. Kuhla B, Boeck K, Lüth HJ et al (2006) Age-dependent changes of glyoxalase I expression in human brain. Neurobiol Aging 27:815–822

    PubMed  CAS  Google Scholar 

  29. Beisswenger PJ, Howell SK, Smith K et al (2003) Glyceraldehyde-3-phosphate dehydrogenase activity as an independent modifier of methylglyoxal levels in diabetes. Biochim Biophys Acta 1637:98–106

    PubMed  CAS  Google Scholar 

  30. Pattin AE, Ochs S, Theisen CS et al (2010) Isoflurane’s effect on interfacial dynamics in GAPDH influences methylglyoxal reactivity. Arch Biochem Biophys 498:7–12

    PubMed  CAS  Google Scholar 

  31. Lee HJ, Howell SK, Sanford RJ et al (2005) Methylglyoxal can modify GAPDH activity and structure. Ann N Y Acad Sci 1043:135–145

    PubMed  CAS  Google Scholar 

  32. Sunaga K, Takahashi H, Chuang DM et al (1995) Glyceraldehyde-3-phosphate dehydrogenase is over-expressed during apoptotic death of neuronal cultures and is recognized by a monoclonal antibody against amyloid plaques from Alzheimer’s brain. Neurosci Lett 200:133–136

    PubMed  CAS  Google Scholar 

  33. Schulze H, Schuler A, Stuber D et al (1993) Rat brain glyceraldehyde-3-phosphate dehydrogenase interacts with the recombinant cytoplasmic domain of Alzheimer’s beta-amyloid precursor protein. J Neurochem 60:1915–1922

    PubMed  CAS  Google Scholar 

  34. Tsuchiya K, Tajima H, Kuwae T et al (2005) Pro-apoptotic protein glyceraldehyde-3-phosphate dehydrogenase promotes the formation of Lewy body-like inclusions. Eur J Neurosci 21:317–326

    PubMed  Google Scholar 

  35. Wang Q, Woltjer RL, Cimino PJ et al (2005) Proteomic analysis of neurofibrillary tangles in Alzheimer disease identifies GAPDH as a detergent-insoluble paired helical filament tau binding protein. FASEB J 19:869–871

    PubMed  CAS  Google Scholar 

  36. Davies SW, Turmaine M, Cozens BA et al (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–548

    PubMed  CAS  Google Scholar 

  37. DiFiglia M, Sapp E, Chase KO et al (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993

    PubMed  CAS  Google Scholar 

  38. Su S, Liu P, Zhang H et al (2011) Proteomic analysis of human age-related nuclear cataracts and normal lens nuclei. Invest Ophthalmol Vis Sci 52:4182–4191

    PubMed  CAS  Google Scholar 

  39. Goto A, Wang YL, Kabuta T et al (2009) Proteomic and histochemical analysis of proteins involved in the dying-back-type of axonal degeneration in the gracile axonal dystrophy (gad) mouse. Neurochem Int 54:330–338

    PubMed  CAS  Google Scholar 

  40. Zhang Y, Da RR, Guo W et al (2005) Axon reactive B cells clonally expanded in the cerebrospinal fluid of patients with multiple sclerosis. J Clin Immunol 25:254–264

    PubMed  CAS  Google Scholar 

  41. Zhang Y, Da RR, Hilgenberg LG et al (2005) Clonal expansion of IgA-positive plasma cells and axon-reactive antibodies in MS lesions. J Neuroimmunol 167:120–130

    PubMed  CAS  Google Scholar 

  42. Kolln J, Ren HM, Da RR et al (2006) Triosephosphate isomerase- and glyceraldehyde-3-phosphate dehydrogenase-reactive autoantibodies in the cerebrospinal fluid of patients with multiple sclerosis. J Immunol 177:5652–5658

    PubMed  CAS  Google Scholar 

  43. Kölln J, Zhang Y, Thai G et al (2010) Inhibition of glyceraldehyde-3-phosphate dehydrogenase activity by antibodies present in the cerebrospinal fluid of patients with multiple sclerosis. J Immunol 185:1968–1975

    PubMed  Google Scholar 

  44. Sultana R, Boyd-Kimball D, Cai J et al (2007) Proteomics analysis of the Alzheimer’s disease hippocampal proteome. J Alzheimers Dis 11:153–164

    PubMed  CAS  Google Scholar 

  45. Bertram L, McQueen MB, Mullin K et al (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39:17–23

    PubMed  CAS  Google Scholar 

  46. Li Y, Nowotny P, Holmans P et al (2004) Association of late-onset Alzheimer’s disease with genetic variation in multiple members of the GAPD gene family. Proc Natl Acad Sci USA 101:15688–15693

    PubMed  CAS  Google Scholar 

  47. Tamaoka A, Endoh R, Shoji S et al (1996) Antibodies to amyloid β protein (Aβ) crossreact with glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Neurobiol Aging 17:405–414

    PubMed  CAS  Google Scholar 

  48. Mazzola JL, Sirover MA (2001) Reduction of glyceraldehyde-3-phosphate dehydrogenase activity in Alzheimer’s disease and in Huntington’s disease fibroblasts. J Neurochem 76:442–449

    PubMed  CAS  Google Scholar 

  49. Dastoor Z, Dreyer JL (2001) Potential role of nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase in apoptosis and oxidative stress. J Cell Sci 114:1643–1653

    PubMed  CAS  Google Scholar 

  50. Nakajima H, Amano W, Fukuhara A et al (2009) An aggregate-prone mutant of human glyceraldehyde-3-phosphate dehydrogenase augments oxidative stress-induced cell death in SH-SY5Y cells. Biochem Biophys Res Commun 390:1066–1071

    PubMed  CAS  Google Scholar 

  51. Naletova I, Schmalhausen E, Kharitonov A et al (2008) Non-native glyceraldehyde-3-phosphate dehydrogenase can be an intrinsic component of amyloid structures. Biochim Biophys Acta 1784:2052–2058

    PubMed  CAS  Google Scholar 

  52. Yamamoto Y, Takase K, Kishino J et al (2011) Proteomic identification of protein targets for 15-deoxy-Δ(12,14)-prostaglandin J2 in neuronal plasma membrane. PLoS One 6:e17552

    PubMed  CAS  Google Scholar 

  53. Chen YH, He RQ, Liu Y et al (2000) Effect of human neuronal tau on denaturation and reactivation of rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase. Biochem J 351:233–240

    PubMed  CAS  Google Scholar 

  54. Li J, Lin Z, Wang CC (2001) Aggregated proteins accelerate but do not increase the aggregation of D-glyceraldehyde-3-phosphate dehydrogenase. Specificity of protein aggregation. J Protein Chem 20:155–163

    PubMed  CAS  Google Scholar 

  55. Li J, Uversky VN, Fink AL (2001) Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human alpha-synuclein. Biochemistry 40:11604–11613

    PubMed  CAS  Google Scholar 

  56. Cuervo AM, Dice JF (2000) When lysosomes get old. Exp Gerontol 35:119–131

    PubMed  CAS  Google Scholar 

  57. Qiao L, Hamamichi S, Caldwell KA et al (2008) Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicity. Mol Brain 1:17

    PubMed  Google Scholar 

  58. Ramirez VD, Kipp JL, Joe I (2001) Estradiol, in the CNS, targets several physiologically relevant membrane associated proteins. Brain Res Brain Res Rev 37:141–152

    PubMed  CAS  Google Scholar 

  59. Kragten E, Lalande I, Zimmermann K et al (1998) Glyceraldehyde-3-phosphate dehydrogenase, the putative target of the antiapoptotic compounds CGP 3466 and R-(-)-deprenyl. J Biol Chem 273:5821–5828

    PubMed  CAS  Google Scholar 

  60. Berry MD (2004) Glyceraldehyde-3-phosphate dehydrogenase as a target for small-molecule disease-modifying therapies in human neurodegenerative disorders. J Psychiatry Neurosci 29:337–345

    PubMed  Google Scholar 

  61. Carlile GW, Chalmers-Redman RME, Tatton NA et al (2000) Reduced apoptosis after nerve growth factor and serum withdrawal: conversion of tetrameric glyceraldehyde-3-phosphate dehydrogenase to a dimer. Mol Pharmacol 57:2–12

    PubMed  CAS  Google Scholar 

  62. Guzhova IV, Lazarev VF, Kaznacheeva AV et al (2011) Novel mechanism of Hsp70 chaperone-mediated prevention of polyglutamine aggregates in a cellular model of huntington disease. Hum Mol Genet 20:3953–3963

    PubMed  CAS  Google Scholar 

  63. Koga H, Martinez-Vicente M, Arias E et al (2011) Constitutive upregulation of chaperone-mediated autophagy in Huntington’s disease. J Neurosci 31:18492–18505

    PubMed  CAS  Google Scholar 

  64. Burke JR, Enghild JJ, Martin ME et al (1996) Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat Med 2:347–350

    PubMed  CAS  Google Scholar 

  65. Paulson HL, Perez MK, Trottier Y et al (1997) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19:333–344

    PubMed  CAS  Google Scholar 

  66. Chen RW, Saunders PA, Wei H et al (1999) Involvement of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and p53 in neuronal apoptosis: evidence that GAPDH is upregulated by p53. J Neurosci 19:9654–9662

    PubMed  CAS  Google Scholar 

  67. Bae BI, Hara MR, Cascio MB et al (2006) Mutant huntingtin: nuclear translocation and cytotoxicity mediated by GAPDH. Proc Natl Acad Sci USA 103:3405–3409

    PubMed  CAS  Google Scholar 

  68. Ishitani R, Tanaka M, Sunaga K et al (1998) Nuclear localization of overexpressed glyceraldehyde-3-phosphate dehydrogenase in cultured cerebellar neurons undergoing apoptosis. Mol Pharmacol 53:701–707

    PubMed  CAS  Google Scholar 

  69. Ishitani R, Chuang DM (1996) Glyceraldehyde-3-phosphate dehydrogenase antisense oligodeoxynucleotides protect against cytosine arabinonucleoside-induced apoptosis in cultured cerebellar neurons. Proc Natl Acad Sci USA 93:9937–9941

    PubMed  CAS  Google Scholar 

  70. Koshy B, Matilla T, Burright EN et al (1996) Spinocerebellar ataxia type-1 and spinobulbar muscular atrophy gene products interact with glyceraldehyde-3-phosphate dehydrogenase. Hum Mol Genet 5:1311–1318

    PubMed  CAS  Google Scholar 

  71. Zuccato C, Tartari M, Crotti A et al (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 35:76–83

    PubMed  CAS  Google Scholar 

  72. Shimojo M (2008) Huntingtin regulates RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) nuclear trafficking indirectly through a complex with REST/NRSF-interacting LIM domain protein (RILP) and dynactin p150 Glued. J Biol Chem 283:34880–34886

    PubMed  CAS  Google Scholar 

  73. Boyle D, Takemoto L (1994) Characterization of the alpha-gamma and alpha-beta complex: evidence for an in vivo functional role of alpha-crystallin as a molecular chaperone. Exp Eye Res 58:9–15

    PubMed  CAS  Google Scholar 

  74. Derham BK, Harding JJ (1999) Alpha-crystallin as a molecular chaperone. Prog Retin Eye Res 18:463–509

    PubMed  CAS  Google Scholar 

  75. Biswas A, Das KP (2004) Role of ATP on the interaction of alpha-crystallin with its substrates and its implications for the molecular chaperone function. J Biol Chem 279:42648–42657

    PubMed  CAS  Google Scholar 

  76. Friedburg D (1973) Enzyme activity patterns in clear human lenses and in different types of human senile cataract. Ciba Found Symp 19:117–133

    Google Scholar 

  77. Yan H, Lou MF, Fernando MR et al (2006) Thioredoxin, thioredoxin reductase, and alpha-crystallin revive inactivated glyceraldehyde 3-phosphate dehydrogenase in human aged and cataract lens extracts. Mol Vis 12:1153–1159

    PubMed  CAS  Google Scholar 

  78. Stallcup WB, Koshland DE Jr (1973) Reactive lysines of yeast glyceraldehyde 3-phosphate dehydrogenase. Attachment of a reporter group to a specific non-essential residue. J Mol Biol 80:63–75

    PubMed  CAS  Google Scholar 

  79. Mathew E, Meriwether BP, Park JH (1967) The enzymatic significance of S-acetylation and N-acetylation of 3-phosphoglyceraldehyde dehydrogenase. J Biol Chem 242:5024–5033

    PubMed  CAS  Google Scholar 

  80. Park JH, Meriwether BP, Clodfelder P et al (1961) The hydrolysis of p-nitrophenyl acetate catalyzed by 3-phosphoglyceraldehyde dehydrogenase. J Biol Chem 236:136–141

    PubMed  CAS  Google Scholar 

  81. Maller C, Schröder E, Eaton P (2011) Glyceraldehyde 3-phosphate dehydrogenase is unlikely to mediate hydrogen peroxide signaling: studies with a novel anti-dimedone sulfenic acid antibody. Antioxid Redox Signal 14:49–60

    PubMed  CAS  Google Scholar 

  82. Hwang IK, Yoo KY, Kim DW et al (2007) Hyperoxidized peroxiredoxins and glyceraldehyde-3-phosphate dehydrogenase immunoreactivity and protein levels are changed in the gerbil hippocampal CA1 region after transient forebrain ischemia. Neurochem Res 32:1530–1538

    PubMed  CAS  Google Scholar 

  83. Hwang NR, Yim SH, Kim YM et al (2009) Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions. Biochem J 423:253–264

    PubMed  CAS  Google Scholar 

  84. Boschi-Muller S, Muller S, Van Dorsselaer A et al (1998) Substituting selenocysteine for active site cysteine 149 of phosphorylating glyceraldehyde 3-phosphate dehydrogenase reveals a peroxidase activity. FEBS Lett 439:241–245

    PubMed  CAS  Google Scholar 

  85. Stamler JS, Hess DT (2010) Nascent nitrosylases. Nat Cell Biol 12:1024–1026

    PubMed  CAS  Google Scholar 

  86. Kornberg MD, Sen N, Hara MR et al (2010) GAPDH mediates nitrosylation of nuclear proteins. Nat Cell Biol 12:1094–1100

    PubMed  CAS  Google Scholar 

  87. Laschet JJ, Minier F, Kurcewicz I et al (2004) Glyceraldehyde-3-phosphate dehydrogenase is a GABAA receptor kinase linking glycolysis to neuronal inhibition. J Neurosci 24:7614–7622

    PubMed  CAS  Google Scholar 

  88. Jannière L, Canceill D, Suski C et al (2007) Genetic evidence for a link between glycolysis and DNA replication. PLoS One 2:e447

    PubMed  Google Scholar 

  89. Popanda O, Fox G, Thielmann HW (1998) Modulation of DNA polymerases alpha, delta and epsilon by lactate dehydrogenase and 3-phosphoglycerate kinase. Biochim Biophys Acta 1397:102–117

    PubMed  CAS  Google Scholar 

  90. Engel M, Seifert M, Theisinger B et al (1998) Glyceraldehyde-3-phosphate dehydrogenase and Nm23-H1/nucleoside diphosphate kinase A. Two old enzymes combine for the novel Nm23 protein phosphotransferase function. J Biol Chem 273:20058–20065

    PubMed  CAS  Google Scholar 

  91. Brüne B, Lapetina EG (1989) Activation of a cytosolic ADP-ribosyltransferase by nitric oxide-generating agents. J Biol Chem 264:8455–8458

    PubMed  Google Scholar 

  92. Kots AY, Skurat AV, Sergienko EA et al (1992) Nitroprusside stimulates the cysteine-specific mono(ADP-ribosylation) of glyceraldehyde-3-phosphate dehydrogenase from human erythrocytes. FEBS Lett 300:9–12

    PubMed  CAS  Google Scholar 

  93. Zhang J, Snyder SH (1992) Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 89:9382–9385

    PubMed  CAS  Google Scholar 

  94. Tanaka Y, Yoshihara K, Kamiya T (1989) Enzymic and nonenzymic mono ADP-ribosylation of proteins in skeletal muscle. Biochem Biophys Res Commun 163:1063–1070

    PubMed  CAS  Google Scholar 

  95. Alvarez-Dominguez C, Madrazo-Toca F, Fernandez-Prieto L et al (2008) Characterization of a Listeria monocytogenes protein interfering with Rab5a. Traffic 9:325–337

    PubMed  CAS  Google Scholar 

  96. Pancholi V, Fischetti VA (1993) Glyceraldehyde-3-phosphate dehydrogenase on the surface of group A streptococci is also an ADP-ribosylating enzyme. Proc Natl Acad Sci USA 90:8154–8158

    PubMed  CAS  Google Scholar 

  97. Moss J, Vaughan M (1988) ADP-ribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins. Adv Enzymol Relat Areas Mol Biol 61:303–379

    PubMed  CAS  Google Scholar 

  98. Jacobson MK, Loflin PT, Aboul-Ela N et al (1990) Modification of plasma membrane protein cysteine residues by ADP-ribose in vivo. J Biol Chem 265:10825–10828

    PubMed  CAS  Google Scholar 

  99. Aguilera L, Giménez R, Badia J et al (2009) NAD+-dependent post-translational modification of Escherichia coli glyceraldehyde-3-phosphate dehydrogenase. Int Microbiol 12:187–192

    PubMed  CAS  Google Scholar 

  100. Alvarez AH, Martinez-Cadena G, Silva ME et al (2007) Entamoeba histolytica: ADP-ribosylation of secreted glyceraldehyde-3-phosphate dehydrogenase. Exp Parasitol 117:349–356

    PubMed  CAS  Google Scholar 

  101. Molina y Vedia L, McDonald B, Reep B et al (1992) Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem 267:24929–24932

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Seidler, N.W. (2013). Multiple Binding Partners. In: GAPDH: Biological Properties and Diversity. Advances in Experimental Medicine and Biology, vol 985. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4716-6_8

Download citation

Publish with us

Policies and ethics