Skip to main content

Functional Diversity

  • Chapter
  • First Online:
GAPDH: Biological Properties and Diversity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 985))

Abstract

There is increasing evidence to support a gene economy model that is fully based on the principles of evolution in which a limited number of proteins does not necessarily reflect a finite number of biochemical processes. The concept of ‘gene sharing’ proposes that a single protein can have alternate functions that are typically attributed to other proteins. GAPDH appears to play this role quite well in that it exhibits more than one function. GAPDH represents the prototype for this new paradigm of protein multi-functionality. The chapter discusses the diverse functions of GAPDH among three broad categories: cell structure, gene expression and signal transduction. Protein function is curiously re-specified given the cell’s unique needs. GAPDH provides the cell with the means of linking metabolic activity to various cellular processes. While interpretations may often lead to GAPDH’s role in meeting focal energy demands, this chapter discusses several other very distinct GAPDH functions (i.e. membrane fusogenic properties) that are quite different from its ability to catalyze oxidative phosphorylation of the triose, glyceraldehyde 3-phosphate. It is suggested that a single protein participates in multiple processes in the structural organization of the cell, controls the transmission of genetic information (i.e. GAPDH’s involvement may not be finite) and mediates intracellular signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24:8–11

    PubMed  CAS  Google Scholar 

  2. Gancedo C, Flores CL (2008) Moonlighting proteins in yeasts. Microbiol Mol Biol Rev 72:197–210

    PubMed  CAS  Google Scholar 

  3. Huberts DH, van der Klei IJ (2010) Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta 1803:520–525

    PubMed  CAS  Google Scholar 

  4. Beinert H, Kennedy MC (1993) Aconitase, a two-faced protein: enzyme and iron regulatory factor. FASEB J 7:1442–1449

    PubMed  CAS  Google Scholar 

  5. Piatigorsky J, O’Brien WE, Norman BL et al (1988) Gene sharing by delta-crystallin and argininosuccinate lyase. Proc Natl Acad Sci USA 85:3479–3483

    PubMed  CAS  Google Scholar 

  6. Piatigorsky J, Wistow GJ (1989) Enzyme/crystallins: gene sharing as an evolutionary strategy. Cell 57:197–199

    PubMed  CAS  Google Scholar 

  7. Jeffery CJ (2003) Moonlighting proteins: old proteins learning new tricks. Trends Genet 19:415–417

    PubMed  CAS  Google Scholar 

  8. Piatigorsky J (2007) Gene sharing and evolution: the diversity of protein functions. Harvard University Press, Cambridge

    Google Scholar 

  9. Jacob F (1977) Evolution and tinkering. Science 196:1161–1166

    PubMed  CAS  Google Scholar 

  10. Dunker AK, Lawson JD, Brown CJ et al (2001) Intrinsically disordered protein. J Mol Graph Model 19:26–59

    PubMed  CAS  Google Scholar 

  11. Suck D, Kabsch W, Mannherz HG (1981) Three-dimensional structure of the complex of skeletal muscle actin and bovine pancreatic DNAse I at 6-A resolution. Proc Natl Acad Sci USA 78:4319–4323

    PubMed  CAS  Google Scholar 

  12. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    PubMed  CAS  Google Scholar 

  13. Kabsch W, Mannherz HG, Suck D et al (1990) Atomic structure of the actin: DNase I complex. Nature 347:37–44

    PubMed  CAS  Google Scholar 

  14. Zheng X, Diraviyam K, Sept D (2007) Nucleotide effects on the structure and dynamics of actin. Biophys J 93:1277–1283

    PubMed  CAS  Google Scholar 

  15. Arnold H, Pette D (1970) Binding of aldolase and triosephosphate dehydrogenase to F-actin and modification of catalytic properties of aldolase. Eur J Biochem 15:360–366

    PubMed  CAS  Google Scholar 

  16. Knull HR, Bronstein WW, DesJardins P et al (1980) Interaction of selected brain glycolytic enzymes with an F-actin-tropomyosin complex. J Neurochem 34:222–225

    PubMed  CAS  Google Scholar 

  17. Ouporov IV, Knull HR, Lowe SL et al (2001) Interactions of glyceraldehyde-3-phosphate dehydrogenase with G- and F-actin predicted by Brownian dynamics. J Mol Recognit 14:29–41

    PubMed  CAS  Google Scholar 

  18. Yuan A, Mills RG, Bamburg JR et al (1999) Cotransport of glyceraldehyde-3-phosphate dehydrogenase and actin in axons of chicken motoneurons. Cell Mol Neurobiol 19:733–744

    PubMed  CAS  Google Scholar 

  19. Knull HR (1978) Association of glycolytic enzymes with particulate fractions from nerve endings. Biochim Biophys Acta 522:1–9

    PubMed  CAS  Google Scholar 

  20. Waingeh VF, Lowe SL, Thomasson KA (2004) Brownian dynamics of interactions between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mutants and F-actin. Biopolymers 73:533–541

    PubMed  CAS  Google Scholar 

  21. Méjean C, Pons F, Benyamin Y et al (1989) Antigenic probes locate binding sites for the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, aldolase and phosphofructokinase on the actin monomer in microfilaments. Biochem J 264:671–677

    PubMed  Google Scholar 

  22. Lowe SL, Adrian C, Ouporov IV et al (2003) Brownian dynamics simulations of glycolytic enzyme subsets with F-actin. Biopolymers 70:456–470

    PubMed  CAS  Google Scholar 

  23. Waingeh VF, Gustafson CD, Kozliak EI et al (2006) Glycolytic enzyme interactions with yeast and skeletal muscle F-actin. Biophys J 90:1371–1384

    PubMed  CAS  Google Scholar 

  24. Wakabayashi T, Huxley HE, Amos LA et al (1975) Three-dimensional image reconstruction of actin-tropomyosin complex and actin-tropomyosin-troponin T-troponin I complex. J Mol Biol 93:477–497

    PubMed  CAS  Google Scholar 

  25. Durchschloag et al (1971) Ray small-angle scattering of yeast glyceraldehyde-3 phosphate dehydrogenase as a function of saturation with nicotinamide-adenine-dinucleotide. Eur J Biochem 19:9–22

    Google Scholar 

  26. Tanner JJ, Hecht RM, Krause KL (1996) Determinants of enzyme thermostability observed in the molecular structure of Thermus aquaticus D-glyceraldehyde-3-phosphate dehydrogenase at 25 angstroms resolution. Biochemistry 35:2597–2609

    PubMed  CAS  Google Scholar 

  27. Khanova HA, Markossian KA, Kleimenov SY et al (2007) Effect of alpha-crystallin on thermal denaturation and aggregation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. Biophys Chem 125:521–531

    PubMed  CAS  Google Scholar 

  28. Humphreys L, Reid S, Masters C (1986) Studies on the topographical localization of the binding sites for substrate and for actin on the enzymes, glyceraldehyde phosphate dehydrogenase and phosphofructokinase. Int J Biochem 18:445–451

    PubMed  CAS  Google Scholar 

  29. Schmitz HD, Bereiter-Hahn J (2002) Glyceraldehyde-3-phosphate dehydrogenase associates with actin filaments in serum deprived NIH 3T3 cells only. Cell Biol Int 26:155–164

    PubMed  CAS  Google Scholar 

  30. Walsh TP, Masters CJ, Morton DJ et al (1981) The reversible binding of glycolytic enzymes in ovine skeletal muscle in response to tetanic stimulation. Biochim Biophys Acta 675:29–39

    PubMed  CAS  Google Scholar 

  31. Huitorel P, Pantaloni D (1985) Bundling of microtubules by glyceraldehyde-3-phosphate dehydrogenase and its modulation by ATP. Eur J Biochem 150:265–269

    PubMed  CAS  Google Scholar 

  32. Durrieu C, Bernier-Valentin F, Rousset B (1987) Microtubules bind glyceraldehyde 3-phosphate dehydrogenase and modulate its enzyme activity and quaternary structure. Arch Biochem Biophys 252:32–40

    PubMed  CAS  Google Scholar 

  33. Durrieu C, Bernier-Valentin F, Rousset B (1987) Binding of glyceraldehyde 3-phosphate dehydrogenase to microtubules. Mol Cell Biochem 74:55–65

    PubMed  CAS  Google Scholar 

  34. Sirover MA (1999) New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta 1432:159–184

    PubMed  CAS  Google Scholar 

  35. Muronetz VI, Wang ZX, Keith TJ et al (1994) Binding constants and stoichiometries of glyceraldehyde 3-phosphate dehydrogenase-tubulin complexes. Arch Biochem Biophys 313:253–260

    PubMed  CAS  Google Scholar 

  36. Melki R, Fievez S, Carlier MF (1996) Continuous monitoring of Pi release following nucleotide hydrolysis in actin or tubulin assembly using 2-amino-6-mercapto-7-methylpurine ribonucleoside and purine-nucleoside phosphorylase as an enzyme-linked assay. Biochemistry 35:12038–12045

    PubMed  CAS  Google Scholar 

  37. Melki R, Carlier MF, Pantaloni D et al (1989) Cold depolymerization of microtubules to double rings: geometric stabilization of assemblies. Biochemistry 28:9143–9152

    PubMed  CAS  Google Scholar 

  38. Kim IH, Lee MN, Ryu SH et al (2011) Nanoscale mapping and affinity constant measurement of signal-transducing proteins by atomic force microscopy. Anal Chem. doi:10.1021/ac102695e

  39. Tisdale EJ, Kelly C, Artalejo CR (2004) Glyceraldehyde-3-phosphate dehydrogenase interacts with Rab2 and plays an essential role in endoplasmic reticulum to Golgi transport exclusive of its glycolytic activity. J Biol Chem 279:54046–54052

    PubMed  CAS  Google Scholar 

  40. Chen J, Wu M, Sezate SA et al (2008) Interaction of glyceraldehyde-3-phosphate dehydrogenase in the light-induced rod alpha-transducin translocation. J Neurochem 104:1280–1292

    PubMed  CAS  Google Scholar 

  41. Glaser PE, Gross RW (1995) Rapid plasmenylethanolamine-selective fusion of membrane bilayers catalyzed by an isoform of glyceraldehyde-3-phosphate dehydrogenase: discrimination between glycolytic and fusogenic roles of individual isoforms. Biochemistry 34:12193–12203

    PubMed  CAS  Google Scholar 

  42. Volker KW, Knull HR (1993) Glycolytic enzyme-tubulin interactions: role of tubulin carboxy terminals. J Mol Recognit 6:167–177

    PubMed  CAS  Google Scholar 

  43. Volker KW, Knull H (1997) A glycolytic enzyme binding domain on tubulin. Arch Biochem Biophys 338:237–243

    PubMed  CAS  Google Scholar 

  44. Walsh JL, Keith TJ, Knull HR (1989) Glycolytic enzyme interactions with tubulin and microtubules. Biochim Biophys Acta 999:64–70

    PubMed  CAS  Google Scholar 

  45. Meurer-Grob P, Kasparian J, Wade RH (2001) Microtubule structure at improved resolution. Biochemistry 40:8000–8008

    PubMed  CAS  Google Scholar 

  46. Imai N, Sasagawa S, Yamamoto A et al (1997) Characterization of the binding of nuclear envelope precursor vesicles and chromatin, and purification of the vesicles. J Biochem 122:1024–1033

    PubMed  CAS  Google Scholar 

  47. Donhauser ZJ, Jobs WB, Binka EC (2010) Mechanics of microtubules: effects of protofilament orientation. Biophys J 99:1668–1675

    PubMed  CAS  Google Scholar 

  48. Wang Q, Woltjer RL, Cimino PJ et al (2005) Proteomic analysis of neurofibrillary tangles in Alzheimer disease identifies GAPDH as a detergent-insoluble paired helical filament tau binding protein. FASEB J 19:869–871

    PubMed  CAS  Google Scholar 

  49. Löwe J, Li H, Downing KH et al (2001) Refined structure of alpha beta-tubulin at 3.5 A resolution. J Mol Biol 313:1045–1057

    PubMed  Google Scholar 

  50. Riederer BM (2007) Microtubule-associated protein 1B, a growth-associated and phosphorylated scaffold protein. Brain Res Bull 71:541–558

    PubMed  CAS  Google Scholar 

  51. Cueille N, Blanc CT, Riederer IM, Riederer BM (2007) Microtubule-associated protein 1B binds glyceraldehyde-3-phosphate dehydrogenase. J Proteome Res 6:2640–2647

    PubMed  CAS  Google Scholar 

  52. Kumagai H, Sakai H (1983) A porcine brain protein (35 K protein) which bundles microtubules and its identification as glyceraldehyde 3-phosphate dehydrogenase. J Biochem 93:1259–1269

    PubMed  CAS  Google Scholar 

  53. Constantinides SM, Deal WC Jr (1969) Reversible dissociation of tetrameric rabbit muscle glyceraldehyde 3-phosphate dehydrogenase into dimers or monomers by adenosine triphosphate. J Biol Chem 244:5695–5702

    PubMed  CAS  Google Scholar 

  54. Ovãdi J, Telegdi M, Batke J et al (1971) Functional non-identity of subunits and isolation of active dimers of D-glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem 22:430–438

    PubMed  Google Scholar 

  55. Stancel GM, Deal WC Jr (1969) Reversible dissociation of yeast glyceraldehyde 3-phosphate dehydrogenase by adenosine triphosphate. Biochemistry 8:4005–4011

    PubMed  CAS  Google Scholar 

  56. Somers M, Engelborghs Y, Baert J (1990) Analysis of the binding of glyceraldehyde-3-phosphate dehydrogenase to microtubules, the mechanism of bundle formation and the linkage effect. Eur J Biochem 193:437–444

    PubMed  CAS  Google Scholar 

  57. Hollenbeck PJ, Suprynowicz F, Cande WZ (1984) Cytoplasmic dynein-like ATPase cross-links microtubules in an ATP-sensitive manner. J Cell Biol 99:1251–1258

    PubMed  CAS  Google Scholar 

  58. Amos LA (1977) Arrangement of high molecular weight associated proteins on purified mammalian brain microtubules. J Cell Biol 72:642–654

    PubMed  CAS  Google Scholar 

  59. Vater W, Müller H, Unger E (1978) Inhibition of microtubule formation by DNA. Biochem Biophys Res Commun 84:721–726

    PubMed  CAS  Google Scholar 

  60. Carlier MF, Simon C, Cassoly R et al (1984) Interaction between microtubule-associated protein tau and spectrin. Biochimie 66:305–311

    PubMed  CAS  Google Scholar 

  61. Knull HR (1985) Interaction of glycolytic enzymes with purified clathrin coated vesicles. Neurochem Int 7:379–383

    PubMed  CAS  Google Scholar 

  62. Nabi IR (1999) The polarization of the motile cell. J Cell Sci 112:1803–1811

    PubMed  CAS  Google Scholar 

  63. Tisdale EJ, Artalejo CR (2007) A GAPDH mutant defective in Src-dependent tyrosine phosphorylation impedes Rab2-mediated events. Traffic 8:733–741

    PubMed  CAS  Google Scholar 

  64. Tisdale EJ, Azizi F, Artalejo CR (2009) Rab2 utilizes glyceraldehyde-3-phosphate dehydrogenase and protein kinase C to associate with microtubules and to recruit dynein. J Biol Chem 284:5876–5884

    PubMed  CAS  Google Scholar 

  65. Volker KW, Reinitz CA, Knull HR (1995) Glycolytic enzymes and assembly of microtubule networks. Comp Biochem Physiol B Biochem Mol Biol 112:503–514

    PubMed  CAS  Google Scholar 

  66. Rumsby M, Afsari F, Stark M et al (2003) Microfilament and microtubule organization and dynamics in process extension by central glia-4 oligodendrocytes: evidence for a microtubule organizing center. Glia 42:118–129

    PubMed  Google Scholar 

  67. Caswell AH, Corbett AM (1985) Interaction of glyceraldehyde-3-phosphate dehydrogenase with isolated microsomal subfractions of skeletal muscle. J Biol Chem 260:6892–6898

    PubMed  CAS  Google Scholar 

  68. Corbett AM, Caswell AH, Brandt NR et al (1985) Determinants of triad junction reformation: identification and isolation of an endogenous promotor for junction reformation in skeletal muscle. J Membr Biol 86:267–276

    PubMed  CAS  Google Scholar 

  69. Nakagawa T, Hirano Y, Inomata A et al (2003) Participation of a fusogenic protein, glyceraldehyde-3-phosphate dehydrogenase, in nuclear membrane assembly. J Biol Chem 278:20395–20404

    PubMed  CAS  Google Scholar 

  70. Bischoff FR, Maier G, Tilz G et al (1990) A 47-kDa human nuclear protein recognized by antikinetochore autoimmune sera is homologous with the protein encoded by RCC1, a gene implicated in onset of chromosome condensation. Proc Natl Acad Sci USA 87:8617–8621

    PubMed  CAS  Google Scholar 

  71. Kaneda M, Takeuchi K, Inoue K et al (1997) Localization of the phosphatidylserine-binding site of glyceraldehyde-3-phosphate dehydrogenase responsible for membrane fusion. J Biochem 122:1233–1240

    PubMed  CAS  Google Scholar 

  72. Hetzer M, Meyer HH, Walther TC et al (2001) Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nat Cell Biol 3:1086–1091

    PubMed  CAS  Google Scholar 

  73. Han X, Ramanadham S, Turk J et al (1998) Reconstitution of membrane fusion between pancreatic islet secretory granules and plasma membranes: catalysis by a protein constituent recognized by monoclonal antibodies directed against glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta 1414:95–107

    PubMed  CAS  Google Scholar 

  74. Glaser PE, Gross RW (1994) Plasmenylethanolamine facilitates rapid membrane fusion: a stopped-flow kinetic investigation correlating the propensity of a major plasma membrane constituent to adopt an HII phase with its ability to promote membrane fusion. Biochemistry 33:5805–5812

    PubMed  CAS  Google Scholar 

  75. Glaser PE, Han X, Gross RW (2002) Tubulin is the endogenous inhibitor of the glyceraldehyde 3-phosphate dehydrogenase isoform that catalyzes membrane fusion: implications for the coordinated regulation of glycolysis and membrane fusion. Proc Natl Acad Sci USA 99:14104–14109

    PubMed  CAS  Google Scholar 

  76. Idriss HT (2000) Man to trypanosome: the tubulin tyrosination/detyrosination cycle revisited. Cell Motil Cytoskeleton 45:173–184

    PubMed  CAS  Google Scholar 

  77. Ercolani L, Brown D, Stuart-Tilley A et al (1992) Colocalization of GAPDH and band 3 (AE1) proteins in rat erythrocytes and kidney intercalated cell membranes. Am J Physiol 262:F892–F896

    PubMed  CAS  Google Scholar 

  78. Su Y, Blake-Palmer KG, Fry AC et al (2011) Glyceraldehyde 3-phosphate dehydrogenase is required for band 3 (anion exchanger 1) membrane residency in the mammalian kidney. Am J Physiol Renal Physiol 300:F157–F166

    PubMed  CAS  Google Scholar 

  79. Devonald MA, Smith AN, Poon JP et al (2003) Non-polarized targeting of AE1 causes autosomal dominant distal renal tubular acidosis. Nat Genet 33:125–127

    PubMed  CAS  Google Scholar 

  80. Daubenberger CA, Tisdale EJ, Curcic M et al (2003) The N′-terminal domain of glyceraldehyde-3-phosphate dehydrogenase of the apicomplexan Plasmodium falciparum mediates GTPase Rab2-dependent recruitment to membranes. Biol Chem 384:1227–1237

    PubMed  CAS  Google Scholar 

  81. Tisdale EJ (2003) Rab2 interacts directly with atypical protein kinase C (aPKC) iota/lambda and inhibits aPKCiota/lambda-dependent glyceraldehyde-3-phosphate dehydrogenase phosphorylation. J Biol Chem 278:52524–52530

    PubMed  CAS  Google Scholar 

  82. Tisdale EJ (2002) Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by protein kinase Ciota/lambda and plays a role in microtubule dynamics in the early secretory pathway. J Biol Chem 277:3334–3341

    PubMed  CAS  Google Scholar 

  83. Tisdale EJ, Artalejo CR (2006) Src-dependent aprotein kinase C iota/lambda (aPKCiota/lambda) tyrosine phosphorylation is required for aPKCiota/lambda association with Rab2 and glyceraldehyde-3-phosphate dehydrogenase on pre-golgi intermediates. J Biol Chem 281:8436–8442

    PubMed  CAS  Google Scholar 

  84. Andrade J, Pearce ST, Zhao H et al (2004) Interactions among p22, glyceraldehyde-3-phosphate dehydrogenase and microtubules. Biochem J 384:327–336

    PubMed  CAS  Google Scholar 

  85. Barroso MR, Bernd KK, DeWitt ND et al (1996) A novel Ca2+ -binding protein, p22, is required for constitutive membrane traffic. J Biol Chem 271:10183–10187

    PubMed  CAS  Google Scholar 

  86. Ito Y, Pagano PJ, Tornheim K et al (1996) Oxidative stress increases glyceraldehyde-3-phosphate dehydrogenase mRNA levels in isolated rabbit aorta. Am J Physiol 270:H81–H87

    PubMed  CAS  Google Scholar 

  87. Song S, Finkel T (2007) GAPDH and the search for alternative energy. Nat Cell Biol 9:869–870

    PubMed  CAS  Google Scholar 

  88. Colell A, Ricci JE, Tait S et al (2007) GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129:983–997

    PubMed  CAS  Google Scholar 

  89. Adastra KL, Chi MM, Riley JK et al (2011) A differential autophagic response to hyperglycemia in the developing murine embryo. Reproduction 141:607–615

    PubMed  CAS  Google Scholar 

  90. Kang HT, Hwang ES (2009) Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell 8:426–438

    PubMed  CAS  Google Scholar 

  91. Sneve ML, Øverbye A, Fengsrud M et al (2005) Comigration of two autophagosome-associated dehydrogenases on two-dimensional polyacrylamide gels. Autophagy 1:157–162

    PubMed  CAS  Google Scholar 

  92. Fengsrud M, Raiborg C, Berg TO et al (2000) Autophagosome-associated variant isoforms of cytosolic enzymes. Biochem J 352:773–781

    PubMed  CAS  Google Scholar 

  93. Sundararaj KP, Wood RE, Ponnusamy S et al (2004) Rapid shortening of telomere length in response to ceramide involves the inhibition of telomere binding activity of nuclear glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 279:6152–6162

    PubMed  CAS  Google Scholar 

  94. Talfournier F, Colloc’h N, Mornon JP et al (1999) Functional characterization of the phosphorylating D-glyceraldehyde 3-phosphate dehydrogenase from the archaeon Methanothermus fervidus by comparative molecular modelling and site-directed mutagenesis. Eur J Biochem 265:93–104

    PubMed  CAS  Google Scholar 

  95. Ryazanov AG (1985) Glyceraldehyde-3-phosphate dehydrogenase is one of the three major RNA-binding proteins of rabbit reticulocytes. FEBS Lett 192:131–134

    PubMed  CAS  Google Scholar 

  96. Nagy E, Rigby WF (1995) Glyceraldehyde-3-phosphate dehydrogenase selectively binds AU-rich RNA in the NAD(+)-binding region (Rossmann fold). J Biol Chem 270:2755–2763

    PubMed  CAS  Google Scholar 

  97. Rossman M, Liljas A, Branden C et al (1975) Evolutionary and structural relationship among dehydrogenases. In: Boyer PD (ed) The enzymes, vol 11. Academic, Orlando

    Google Scholar 

  98. Karpel RL, Burchard AC (1981) A basic isozyme of yeast glyceraldehyde-3-phosphate dehydrogenase with nucleic acid helix-destabilizing activity. Biochim Biophys Acta 654:256–267

    PubMed  CAS  Google Scholar 

  99. Kondo S, Kubota S, Mukudai Y et al (2011) Binding of glyceraldehyde-3-phosphate dehydrogenase to the cis-acting element of structure-anchored repression in ccn2 mRNA. Biochem Biophys Res Commun 405:382–387

    PubMed  CAS  Google Scholar 

  100. Bonafé N, Gilmore-Hebert M, Folk NL et al (2005) Glyceraldehyde-3-phosphate dehydrogenase binds to the AU-Rich 3′ untranslated region of colony-stimulating factor-1 (CSF-1) messenger RNA in human ovarian cancer cells: possible role in CSF-1 posttranscriptional regulation and tumor phenotype. Cancer Res 65:3762–3771

    PubMed  Google Scholar 

  101. Rodríguez-Pascual F, Redondo-Horcajo M, Magán-Marchal N et al (2008) Glyceraldehyde-3-phosphate dehydrogenase regulates endothelin-1 expression by a novel, redox-sensitive mechanism involving mRNA stability. Mol Cell Biol 28:7139–7155

    PubMed  Google Scholar 

  102. Kubota S, Hattori T, Nakanishi T et al (1999) Involvement of cis-acting repressive element(s) in the 30-untranslated region of human connective tissue growth factor gene. FEBS Lett 450:84–88

    PubMed  CAS  Google Scholar 

  103. Nagy E, Henics T, Eckert M et al (2000) Identification of the NAD(+)-binding fold of glyceraldehyde-3-phosphate dehydrogenase as a novel RNA-binding domain. Biochem Biophys Res Commun 275:253–260

    PubMed  CAS  Google Scholar 

  104. McGowan K, Pekala PH (1996) Dehydrogenase binding to the 3′-untranslated region of GLUT1 mRNA. Biochem Biophys Res Commun 221:42–45

    PubMed  CAS  Google Scholar 

  105. Ryazanov AG, Ashmarina LI, Muronetz VI (1988) Association of glyceraldehyde-3-phosphate dehydrogenase with mono- and polyribosomes of rabbit reticulocytes. Eur J Biochem 171:301–305

    PubMed  CAS  Google Scholar 

  106. Boers W, Slater EC (1973) The effect of substrates, effectors, acetyl phosphate and iodoacetate on the binding of NAD+ and NADH to rabbit-muscle glyceraldehydephosphate dehydrogenase. Biochim Biophys Acta 315:272–284

    CAS  Google Scholar 

  107. Singh R, Green MR (1993) Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science 259:365–368

    PubMed  CAS  Google Scholar 

  108. Yang SH, Liu ML, Tien CF et al (2009) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interaction with 3′ ends of Japanese encephalitis virus RNA and colocalization with the viral NS5 protein. J Biomed Sci 16:40

    PubMed  Google Scholar 

  109. Wang RY, Nagy PD (2008) Tomato bushy stunt virus co-opts the RNA-binding function of a host metabolic enzyme for viral genomic RNA synthesis. Cell Host Microbe 3:178–187

    PubMed  CAS  Google Scholar 

  110. Wang X, Ahlquist P (2008) Filling a GAP(DH) in asymmetric viral RNA synthesis. Cell Host Microbe 3:124–125

    PubMed  CAS  Google Scholar 

  111. De BP, Gupta S, Zhao H et al (1996) Specific interaction in vitro and in vivo of glyceraldehyde-3-phosphate dehydrogenase and LA protein with cis-acting RNAs of human parainfluenza virus type 3. J Biol Chem 271:24728–24735

    PubMed  CAS  Google Scholar 

  112. Dollenmaier G, Weitz M (2003) Interaction of glyceraldehyde-3-phosphate dehydrogenase with secondary and tertiary RNA structural elements of the hepatitis A virus 3′ translated and non-translated regions. J Gen Virol 84:403–414

    PubMed  CAS  Google Scholar 

  113. Petrik J, Parker H, Alexander GJ (1999) Human hepatic glyceraldehyde-3-phosphate dehydrogenase binds to the poly(U) tract of the 3′ non-coding region of hepatitis C virus genomic RNA. J Gen Virol 80:3109–3113

    PubMed  CAS  Google Scholar 

  114. Choudhary S, De BP, Banerjee AK (2000) Specific phosphorylated forms of glyceraldehyde 3-phosphate dehydrogenase associate with human parainfluenza virus type 3 and inhibit viral transcription in vitro. J Virol 74:3634–3641

    PubMed  CAS  Google Scholar 

  115. Chang KH, Brown EA, Lemon SM (1993) Cell type-specific proteins which interact with the 59 nontranslated region of hepatitis A virus RNA. J Virol 67:6716–6725

    PubMed  CAS  Google Scholar 

  116. Schultz DE, Hardin CC, Lemon SM (1996) Specific interaction of glyceraldehyde 3-phosphate dehydrogenase with the 59- nontranslated RNA of hepatitis A virus. J Biol Chem 271:14134–14142

    PubMed  CAS  Google Scholar 

  117. Yi M, Schultz DE, Lemon SM (2000) Functional significance of the interaction of hepatitis A virus RNA with glyceraldehyde 3-phosphate dehydrogenase (GAPDH): opposing effects of GAPDH and polypyrimidine tract binding protein on internal ribosome entry site function. J Virol 74:6459–6468

    PubMed  CAS  Google Scholar 

  118. Tsai RL, Green H (1973) Studies on a mammalian cell protein (P8) with affinity for DNA in vitro. J Mol Biol 73:307–316

    PubMed  CAS  Google Scholar 

  119. Perucho M, Salas J, Salas ML (1977) Identification of the mammalian DNA-binding protein P8 as glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem 81:557–562

    PubMed  CAS  Google Scholar 

  120. Perucho M, Salas J, Salas ML (1980) Study of the interaction of glyceraldehyde-3-phosphate dehydrogenase with DNA. Biochim Biophys Acta 606:181–195

    PubMed  CAS  Google Scholar 

  121. Jin H, Agarwal S, Agarwal S et al (2011) Surface export of GAPDH/SDH, a glycolytic enzyme, is essential for Streptococcus pyogenes virulence. MBio 2:e00068-11

    PubMed  Google Scholar 

  122. Morgenegg G, Winkler GC, Hübscher U et al (1986) Glyceraldehyde-3-phosphate dehydrogenase is a nonhistone protein and a possible activator of transcription in neurons. J Neurochem 47:54–62

    PubMed  CAS  Google Scholar 

  123. Heizmann CW, Arnold EM, Kuenzle CC (1980) Fluctuations of non-histone chromosomal proteins in differentiating brain cortex and cerebellar neurons. J Biol Chem 255:11504–11511

    PubMed  CAS  Google Scholar 

  124. Heizmann CW, Arnold EM, Kuenzle CC (1982) Changing patterns of single-stranded-DNA-binding proteins in differentiating brain cortex and cerebellar neurons. Eur J Biochem 127:57–61

    PubMed  CAS  Google Scholar 

  125. Mansur NR, Meyer-Siegler K, Wurzer JC et al (1993) Cell cycle regulation of the glyceraldehyde-3-phosphate dehydrogenase/uracil DNA glycosylase gene in normal human cells. Nucleic Acids Res 21:993–998

    PubMed  CAS  Google Scholar 

  126. Cool BL, Sirover MA (1989) Immunocytochemical localization of the base excision repair enzyme uracil DNA glycosylase in quiescent and proliferating normal human cells. Cancer Res 49:3029–3036

    PubMed  CAS  Google Scholar 

  127. Grosse F, Nasheuer HP, Scholtissek S, Schomburg U et al (1986) Lactate dehydrogenase and glyceraldehyde-phosphate dehydrogenase are single-stranded DNA-binding proteins that affect the DNA-polymerase-alpha-primase complex. Eur J Biochem 160:459–467

    PubMed  CAS  Google Scholar 

  128. Zheng L, Roeder RG, Luo Y (2003) S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 114:255–266

    PubMed  CAS  Google Scholar 

  129. Dai RP, Yu FX, Goh SR et al (2008) Histone 2B (H2B) expression is confined to a proper NAD+/NADH redox status. J Biol Chem 283:26894–26901

    PubMed  CAS  Google Scholar 

  130. Vollberg TM, Siegler KM, Cool BL et al (1989) Isolation and characterization of the human uracil DNA glycosylase gene. Proc Natl Acad Sci USA 86:8693–8697

    PubMed  CAS  Google Scholar 

  131. Meyer-Siegler K, Mauro DJ, Seal G et al (1991) A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 88:8460–8464

    PubMed  CAS  Google Scholar 

  132. Meyer-Siegler K, Rahman-Mansur N, Wurzer JC et al (1992) Proliferative dependent regulation of the glyceraldehyde-3-phosphate dehydrogenase/uracil DNA glycosylase gene in human cells. Carcinogenesis 13:2127–2132

    PubMed  CAS  Google Scholar 

  133. Gombar CT, Katz EJ, Magee PN et al (1981) Induction of the DNA repair enzymes uracil DNA glycosylase and 3-methyladenine DNA glycosylase in regenerating rat liver. Carcinogenesis 2:595–599

    PubMed  CAS  Google Scholar 

  134. Wang X, Sirover MA, Anderson LE (1999) Pea chloroplast glyceraldehyde-3-phosphate dehydrogenase has uracil glycosylase activity. Arch Biochem Biophys 367:348–353

    PubMed  CAS  Google Scholar 

  135. Baxi MD, Vishwanatha JK (1995) Uracil DNA glycosylase/glyceraldehyde-3-phosphate dehydrogenase is an Ap4A binding protein. Biochemistry 34:9700–9707

    PubMed  CAS  Google Scholar 

  136. Nishimura A, Moriya S, Ukai H et al (1997) Diadenosine 5′,5′′′-P1, P4-tetraphosphate (Ap4A) controls the timing of cell division in Escherichia coli. Genes Cells 2:401–413

    PubMed  CAS  Google Scholar 

  137. Krebs EG, Rafter GW, Junge JM (1953) Yeast glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 200:479–492

    PubMed  CAS  Google Scholar 

  138. Cori GT, Slein MW, Cori CF (1948) Crystalline D-glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle. J Biol Chem 173:605–618

    PubMed  CAS  Google Scholar 

  139. Hara MR, Cascio MB, Sawa A (2006) GAPDH as a sensor of NO stress. Biochim Biophys Acta 1762:502–509

    PubMed  CAS  Google Scholar 

  140. Hara MR, Agrawal N, Kim SF et al (2005) S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 7:665–674

    PubMed  CAS  Google Scholar 

  141. Mohr S, Stamler JS, Brüne B (1996) Posttranslational modification of glyceraldehyde-3-phosphate dehydrogenase by S-nitrosylation and subsequent NADH attachment. J Biol Chem 271:4209–4214

    PubMed  CAS  Google Scholar 

  142. Mohr S, Hallak H, de Boitte A et al (1999) Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 274:9427–9430

    PubMed  CAS  Google Scholar 

  143. Molina y Vedia L, McDonald B, Reep B et al (1992) Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem 267:24929–24932

    PubMed  CAS  Google Scholar 

  144. Souza JM, Radi R (1998) Glyceraldehyde-3-phosphate dehydrogenase inactivation by peroxynitrite. Arch Biochem Biophys 360:187–194

    PubMed  CAS  Google Scholar 

  145. Parker DJ, Allison WS (1969) The mechanism of inactivation of glyceraldehyde 3-phosphate dehydrogenase by tetrathionate, o-iodosobenzoate, and iodine monochloride. J Biol Chem 244:180–189

    PubMed  CAS  Google Scholar 

  146. Batthyany C, Schopfer FJ, Baker PR et al (2006) Reversible post-translational modification of proteins by nitrated fatty acids in vivo. J Biol Chem 281:20450–20463

    PubMed  CAS  Google Scholar 

  147. McDonald B, Reep B, Lapetina EG et al (1993) Glyceraldehyde-3-phosphate dehydrogenase is required for the transport of nitric oxide in platelets. Proc Natl Acad Sci USA 90:11122–11126

    PubMed  CAS  Google Scholar 

  148. Yego EC, Mohr S (2010) Siah-1 Protein is necessary for high glucose-induced glyceraldehyde-3-phosphate dehydrogenase nuclear accumulation and cell death in Muller cells. J Biol Chem 285:3181–3190

    PubMed  CAS  Google Scholar 

  149. Sirover MA (2011) On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control. Biochim Biophys Acta 1810:741–751

    PubMed  CAS  Google Scholar 

  150. Saunders PA, Chen RW, Chuang DM (1999) Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase isoforms during neuronal apoptosis. J Neurochem 72:925–932

    PubMed  CAS  Google Scholar 

  151. Mitne-Neto M, Ramos CR, Pimenta DC et al (2007) A mutation in human VAP-B–MSP domain, present in ALS patients, affects the interaction with other cellular proteins. Protein Expr Purif 55:139–146

    PubMed  CAS  Google Scholar 

  152. Ferns JE, Theisen CS, Fibuch EE et al (2012) Protection against protein aggregation by alpha-crystallin as a mechanism of preconditioning. Neurochem Res 37:244–252

    PubMed  CAS  Google Scholar 

  153. Little C, O’Brien PJ (1969) Mechanism of peroxide-inactivation of the sulphydryl enzyme glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem 10:533–538

    PubMed  CAS  Google Scholar 

  154. Morigasaki S, Shimada K, Ikner A et al (2008) Glycolytic enzyme GAPDH promotes peroxide stress signaling through multistep phosphorelay to a MAPK cascade. Mol Cell 30:108–113

    PubMed  CAS  Google Scholar 

  155. Kim SR, Kareva T, Yarygina O et al (2011) AAV Transduction of dopamine neurons with constitutively active Rheb protects from neurodegeneration and mediates axon regrowth. Mol Ther. doi:10.1038/mt.2011.213

  156. Zhou X, Ikenoue T, Chen X et al (2009) Rheb controls misfolded protein metabolism by inhibiting aggresome formation and autophagy. Proc Natl Acad Sci USA 106:8923–8928

    PubMed  CAS  Google Scholar 

  157. Lee MN, Ha SH, Kim J et al (2009) Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol Cell Biol 29:3991–4001

    PubMed  CAS  Google Scholar 

  158. Buller CL, Heilig CW, Brosius FC 3rd (2011) GLUT1 enhances mTOR activity independently of TSC2 and AMPK. Am J Physiol Renal Physiol 301:F588–F596

    PubMed  CAS  Google Scholar 

  159. Shen W, Brown NS, Finn PF et al (2006) Akt and Mammalian target of rapamycin regulate separate systems of proteolysis in renal tubular cells. J Am Soc Nephrol 17:2414–2423

    PubMed  CAS  Google Scholar 

  160. Isenman LD, Dice JF (1989) Secretion of intact proteins and peptide fragments by lysosomal pathways of protein degradation. J Biol Chem 264:21591–22156

    PubMed  CAS  Google Scholar 

  161. Cuervo AM, Terlecky SR, Dice JF et al (1994) Selective binding and uptake of ribonuclease A and glyceraldehyde-3-phosphate dehydrogenase by isolated rat liver lysosomes. J Biol Chem 269:26374–26380

    PubMed  CAS  Google Scholar 

  162. Franch HA, Sooparb S, Du J et al (2001) A mechanism regulating proteolysis of specific proteins during renal tubular cell growth. J Biol Chem 276:19126–19131

    PubMed  CAS  Google Scholar 

  163. Marri L, Zaffagnini M, Collin V et al (2009) Prompt and easy activation by specific thioredoxins of calvin cycle enzymes of Arabidopsis thaliana associated in the GAPDH/CP12/PRK supramolecular complex. Mol Plant 2:259–269

    PubMed  CAS  Google Scholar 

  164. Howard TP, Metodiev M, Lloyd JC et al (2008) Thioredoxin-mediated reversible dissociation of a stromal multiprotein complex in response to changes in light availability. Proc Natl Acad Sci USA 105:4056–4061

    PubMed  CAS  Google Scholar 

  165. Fermani S, Sparla F, Falini G et al (2007) Molecular mechanism of thioredoxin regulation in photosynthetic A2B2-glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 104:11109–11114

    PubMed  CAS  Google Scholar 

  166. Trost P, Fermani S, Marri L et al (2006) Thioredoxin-dependent regulation of photosynthetic glyceraldehyde-3-phosphate dehydrogenase: autonomous vs. CP12-dependent mechanisms. Photosynth Res 89:263–275

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Seidler, N.W. (2013). Functional Diversity. In: GAPDH: Biological Properties and Diversity. Advances in Experimental Medicine and Biology, vol 985. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4716-6_4

Download citation

Publish with us

Policies and ethics