Skip to main content

In situ Tumor Ablation with Radiation Therapy: Its Effect on the Tumor Microenvironment and Anti-tumor Immunity

  • Chapter
  • First Online:
Tumor Ablation

Part of the book series: The Tumor Microenvironment ((TTME,volume 5))

Abstract

The delivery of external beam radiation therapy (RT) for cancer with intent to cure has been optimized over the last 80 years and standardized to a protocol with doses fractionated into around 2 Gy amounts delivered daily five times per week to the tumor with a relatively homogeneous field and with the total dose being determined by what adjacent late responding normal tissues might tolerate. The radiobiological principles that underlie the success of such treatments have been elaborated with the most important being the relative sparing of tissues that turnover slowly (late responding tissues) compared with rapidly (acute responding tissues and many cancers) by small dose fractions. The aim of classical RT is therefore to preserve normal tissue function while curing cancer.

The development of more precise dose delivery techniques, accompanied by improved computing and imaging capabilities, have recently added an extra dimension to what can be achieved with RT for cancer. Important trends have emerged towards the use of hypofractionated or high ablative oligofractionated doses. The latter in particular have given early results in treatment of early stage non-small-cell lung cancer, solitary metastases, and some other indications that are very promising and encourage further innovation. The aims of these different types of treatments are however different from those of conventional RT.

This changing face of RT is accompanied by a changing radiobiology. The microenvironmental effects and immunological consequences of high dose fractions are still under investigation but higher than conventional dose fractions are likely to promote more tumor microvasculature damage and pro-inflammatory and pro-oxidant responses that will enhance “danger” signaling in tissues and promote RT-induced anti-tumor immune responses. Optimization of the more advantageous radiobiological aspects of these altered radiation schedules and delivery techniques is a clear and urgent clinical need if we are to improve their radiotherapeutic benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coutard H (1937) The results and methods of treatment of cancer by radiation. Ann Surg 106:584–598

    Article  PubMed  CAS  Google Scholar 

  2. Withers HR (1975) The 4Rs of radiotherapy. Adv Radiat Biol 5:241–249

    Google Scholar 

  3. Strandquist M (1944) A study of the cummulative effects of fractionated x-ray treatment based on the experience at the radiumhemmet with the treatment of 280 cases of carcinoma of the skin and lip. Acta Radiol 55 (suppl):300–304

    Google Scholar 

  4. Fowler JF (2010) 21 Years of biologically effective dose. Br J Radiol 83:554–568

    Article  PubMed  CAS  Google Scholar 

  5. Leksell L (1983) Stereotactic radiosurgery. J Neurol Neurosurg Psychiatry 46:797–803

    Article  PubMed  CAS  Google Scholar 

  6. Hazard LJ, Jensen RL, Shrieve DC (2005) Role of stereotactic radiosurgery in the treatment of brain metastases. Am J Clin Oncol 28:403–410

    Article  PubMed  Google Scholar 

  7. Fakiris AJ, McGarry RC, Yiannoutsos CT et al (2009) Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study. Int J Radiat Oncol Biol Phys 75:677–682

    Article  PubMed  Google Scholar 

  8. Timmerman RD, Park C, Kavanagh BD (2007) The North American experience with stereotactic body radiation therapy in non-small cell lung cancer. J Thorac Oncol 2:S101–112

    Article  PubMed  Google Scholar 

  9. Kavanagh BD, Schefter TE, Cardenes HR et al (2006) Interim analysis of a prospective phase I/II trial of sbrt for liver metastases. Acta Oncologica 45:848–855

    Article  PubMed  Google Scholar 

  10. Martinez AA, Demanes J, Vargas C et al (2010) High-dose-rate prostate brachytherapy: an excellent accelerated-hypofractionated treatment for favorable prostate cancer. Am J Clin Oncol 33:481–488

    Article  PubMed  Google Scholar 

  11. Fowler JF, Tome WA, Fenwick JD et al (2004) A challenge to traditional radiation oncology. Int J Radiat Oncol Biol Phys 60:1241–1256

    Article  PubMed  Google Scholar 

  12. Bucci MK, Bevan A, Roach M (2005) Advances in radiation therapy: conventional to 3D, to IMRT, to 4D, and beyond. CA Cancer J Clin 55:117–134

    Article  PubMed  Google Scholar 

  13. Verellen D, Vanhavere F (1999) Risk assessment of radiation-induced malignancies based on whole-body equivalent dose estimates for imrt treatment in the head and neck region. Radiother Oncol 53:199–203

    Article  PubMed  CAS  Google Scholar 

  14. Catcheside DG, Lea DE, Thoday JM (1946) Types of chromosome structural change induced by the irradiation of tradescantia microspores. J Genet 47:113–136

    Article  PubMed  CAS  Google Scholar 

  15. Puck TT, Marcus PI (1956) Action of X-Rays on mammalian cells. J Exp Med 103:653–666

    Article  PubMed  CAS  Google Scholar 

  16. Withers HR (1985) Biologic basis for altered fractionation schemes. Cancer 55:2086–2095

    Article  PubMed  CAS  Google Scholar 

  17. Fowler JF (1984) The eighteenth douglas lea lecture. 40 years of radiobiology: its impact on radiotherapy. Phys Med Biol 29:97–113

    Article  PubMed  CAS  Google Scholar 

  18. Down JD, Boudewijn A, van Os R et al (1995) Variations in radiation sensitivity and repair among different hematopoietic stem cell subsets following fractionated irradiation. Blood 86:122–127

    PubMed  CAS  Google Scholar 

  19. Vegesna V, Withers HR, Taylor JM (1988) Epilation in mice after single and multifractionated irradiation. Radiother Oncol 12:233–239

    Article  PubMed  CAS  Google Scholar 

  20. McBride WH, Schaue D. Radiation biology of SBRT: Is there a new biology involved? (2011) In: Pollock AA, Ahmed MM, (ed) Hypofractionation scientific concepts and clinical experiences. Ellicott City, MD: LumiText Publishing pp3–18

    Google Scholar 

  21. Brenner DJ (2008) The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Rad Oncol 18:234–239

    Article  Google Scholar 

  22. Park C, Papiez L, Zhang S et al (2008) Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys 70:847–852

    Article  PubMed  Google Scholar 

  23. Fuks Z, Kolesnick R (2005) Engaging the vascular component of the tumor response. Cancer Cell 8:89–91

    Article  PubMed  CAS  Google Scholar 

  24. Thames HD, Bentzen SM, Turesson I et al (1990) Time-dose factors in radiotherapy: a review of the human data. Radiother Oncol 19:219–235

    Article  PubMed  CAS  Google Scholar 

  25. Brenner DJ, Hall EJ (1999) Fractionation and protraction for radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys 43:1095–1101

    Article  PubMed  CAS  Google Scholar 

  26. Bentzen SM, Agrawal RK, Aird EG et al (2008) The UK standardisation of breast radiotherapy (start) trial a of radiotherapy hypofractionation for treatment of early breast cancer: A RANDOMISED TRIAL. Lancet Oncol 9:331–341

    Article  PubMed  CAS  Google Scholar 

  27. Syljuasen RG, Hong JH, McBride WH (1996) Apoptosis and delayed expression of c-Jun and c-Fos after gamma irradiation of jurkat T cells. Radiat Res 146:276–282

    Article  PubMed  CAS  Google Scholar 

  28. Chen FH, Chiang CS, Wang CC et al (2009) Radiotherapy decreases vascular density and causes hypoxia with macrophage aggregation in Tramp-C1 prostate tumors. Clin Cancer Res 15:1721–1729

    Article  PubMed  CAS  Google Scholar 

  29. Ahn GO, Tseng D, Liao CH et al (2010) Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc Natl Acad Sci U S A 107:8363–8368

    Article  PubMed  CAS  Google Scholar 

  30. Milas L (1990) Tumor bed effect in murine tumors: relationship to tumor take and tumor macrophage content. Radiat Res 123:232–236

    Article  PubMed  CAS  Google Scholar 

  31. ten Hagen TL, Eggermont AM (2006) Changing the pathophysiology of solid tumours: the potential of tnf and other vasoactive agents. Int J Hyperthermia 22:241–246

    Article  PubMed  CAS  Google Scholar 

  32. McBride WH, Chiang C-S, Olson JL et al (2004) A sense of danger from radiation. Radiat Res 162:1–19

    Article  PubMed  CAS  Google Scholar 

  33. Schaue D, Comin-Anduix B, Ribas A et al (2008) T-cell responses to survivin in cancer patients undergoing radiation therapy. Clin Cancer Res 14:4883–4890

    Article  PubMed  CAS  Google Scholar 

  34. Chiang CS, Hong JH, Stalder A et al (1997) Delayed molecular responses to brain irradiation. Int J Radiat Biol 72:45–53

    Article  PubMed  CAS  Google Scholar 

  35. Hong JH, Chiang CS, Campbell IL et al (1995) Induction of acute phase gene expression by brain irradiation. Int J Radiat Oncol Biol Phys 33:619–626

    Article  PubMed  CAS  Google Scholar 

  36. Newcomb EW, Demaria S, Lukyanov Y et al (2006) The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive Gl261 gliomas. Clin Cancer Res 12:4730–4737

    Article  PubMed  CAS  Google Scholar 

  37. Reits EA, Hodge JW, Herberts CA et al (2006) Radiation modulates the peptide repertoire, enhances Mhc class I expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271

    Article  PubMed  CAS  Google Scholar 

  38. Schaue D, Koya RC, Liao YP et al (2010) Immune rejection in a humanized model of murine prostate cancer. Anticancer Res 30:409–414

    PubMed  Google Scholar 

  39. Santin AD, Hiserodt JC, Fruehauf J et al (1996) Effects of irradiation on the expression of surface antigens in human ovarian cancer. Gynecol Oncol 60:468–474

    Article  PubMed  CAS  Google Scholar 

  40. Sharma A, Bode B, Wenger RH et al (2011) Gamma-radiation promotes immunological recognition of cancer cells through increased expression of cancer-testis antigens in vitro and in vivo. PLoS One 6:e28217

    Google Scholar 

  41. Schaue D, McBride WH (2010) Links between innate immunity and normal tissue radiobiology. Radiat Res 173:406–417

    Article  PubMed  CAS  Google Scholar 

  42. Mevorach D (1999) The immune response to apoptotic cells. Ann N Y Acad Sci 887:191–198

    Article  PubMed  CAS  Google Scholar 

  43. Ma Y, Conforti R, Aymeric L et al (2011) How to improve the immunogenicity of chemotherapy and radiotherapy. Cancer Metastasis Rev 30:71–82

    Article  PubMed  CAS  Google Scholar 

  44. Burnette BC, Liang H, Lee Y et al (2011) The Efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer Res 71:2488–2496

    Article  PubMed  CAS  Google Scholar 

  45. Liao YP, Schaue D, McBride WH (2007) Modification of the tumor microenvironment to enhance immunity. Front Biosci 12:3576–3600

    Article  PubMed  CAS  Google Scholar 

  46. Liao YP, Wang CC, Butterfield LH et al (2004) Ionizing radiation affects human mart-1 melanoma antigen processing and presentation by dendritic cells. J Immunol 173:2462–2469

    PubMed  CAS  Google Scholar 

  47. Tsai CH, Hong JH, Hsieh KF et al (2006) Tetracycline-regulated intratumoral expression of interleukin-3 enhances the efficacy of radiation therapy for murine prostate cancer. Cancer Gene Ther 13:1082–1092

    Article  PubMed  CAS  Google Scholar 

  48. Kao J, Ko EC, Eisenstein S et al (2011) Targeting immune suppressing myeloid-derived suppressor cells in oncology. Crit Rev Oncol Hematol 77:12–19

    Article  PubMed  Google Scholar 

  49. Tsai CS, Chen FH, Wang CC et al (2007) Macrophages from irradiated tumors express higher levels of inos, arginase-I and cox-2, and promote tumor growth. Int J Radiat Oncol Biol Phys 68:499–507

    Article  PubMed  CAS  Google Scholar 

  50. Kachikwu EL, Iwamoto KS, Liao YP et al (2010) radiation enhances regulatory t cell representation. Int J Radiat Oncol Biol Phys 81:1128–1135

    Article  PubMed  Google Scholar 

  51. McBride WH, Howie SE (1986) Induction of tolerance to a murine fibrosarcoma in two zones of dosage–the involvement of suppressor cells. Br J Cancer 53:707–711

    Article  PubMed  CAS  Google Scholar 

  52. Dewan MZ, Galloway AE, Kawashima N et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-ctla-4 antibody. Clin Cancer Res 15:5379–5388

    Article  PubMed  CAS  Google Scholar 

  53. Schaue DS, Ratikan JA, Iwamoto KS, McBride WH (2012) Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys 83:1306–1310

    Google Scholar 

  54. Kjellberg RN (1988) The gamma knife. JAMA: J Am Med Assoc 260:2505–2506

    Article  CAS  Google Scholar 

  55. Philippens ME, Pop LA, Visser AG et al (2009) Bath and Shower effect in spinal cord: the effect of time interval. Int J Radiat Oncol Biol Phys 73:514–522

    Article  PubMed  Google Scholar 

  56. Formenti SC, Demaria S (2009) Systemic effects of local radiotherapy. Lancet Oncol 10:718–726

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. McBride .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McBride, W., Schaue, D. (2013). In situ Tumor Ablation with Radiation Therapy: Its Effect on the Tumor Microenvironment and Anti-tumor Immunity. In: Keisari, Y. (eds) Tumor Ablation. The Tumor Microenvironment, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4694-7_6

Download citation

Publish with us

Policies and ethics