Phenotypic Evaluation of Spring Barley RIL Mapping Populations for Pre-harvest Sprouting, Fusarium Head Blight and β-Glucans

  • Linda Legzdina
  • Mara Bleidere
  • Guna Usele
  • Daiga Vilcane
  • Indra Beinarovica
  • Ieva Mezaka
  • Zaiga Jansone
  • Nils Rostoks
Conference paper

Abstract

The overall objective of the research is to develop molecular markers which can be used in spring barley breeding. The aim of this study was to summarise phenotyping data from recombinant inbred line (RIL) populations for mapping the QTLs for resistance to pre-harvest sprouting and Fusarium head blight (FHB) as well as content of β-glucans. The field and laboratory experiments were performed at the State Priekuli Plant Breeding Institute and at the State Stende Cereal Breeding Institute for two seasons (2010–2011). The mapping populations for pre-harvest sprouting consist of 93 (RILs produced from a cross between hulless barley (HB) breeding line ‘PR 3642’ (susceptible) and HB variety ‘CDC Rattan’ (resistant), and of 94 RILs from a cross between HB variety ‘CDC Freedom’ (susceptible) and hulled variety ‘Samson’ (resistant). Eighty-six RILs for mapping resistance to FHB were derived from a cross between ‘Fontana’ (susceptible) and ‘ND 16461’ (resistant). The content of β-glucans was evaluated in 106 RIL population developed from the spring barley cross of HB lines ‘KM-1910’ (low content of β-glucans) and ‘KM-2084’ (high) and in 117 RILs developed from cross of hulled variety ‘Justina’ (low content of β-glucans) and ‘KM-2084’ (high). The noticeable variation among the recombinant inbred lines is found for all evaluated traits.

Keywords

Spring barley Pre-harvest sprouting FHB β-Glucans RIL Phenotyping 

References

  1. Berloo, R., & Stam, P. (1998). Marker assisted selection in autogamous RIL populations: A simulation study. Theoretical and Applied Genetics, 96, 147–154.CrossRefGoogle Scholar
  2. Bernando, R. (2008). Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Science, 48, 1649–1664.CrossRefGoogle Scholar
  3. Bleidere, M., & Belicka, I. (2009). Characteristic of grain quality for early generation lines in the crossings between covered and hulless barley. In Research for Rural Development 2009. International Scientific Conference Proceedings (pp. 14–20). Jelgava: LLU.Google Scholar
  4. Buerstmayr, H., Steiner, B., Lemmens, M., & Ruckenbauer, P. (2000). Resistance to fusarium head blight in winter wheat: Heritability and trait associations. Crop Science, 40, 1012–1018.CrossRefGoogle Scholar
  5. Buerstmayr, H., Legzdina, L., Steiner, B., & Lemmens, M. (2004). Variation for resistance to Fusarium head blight in spring barley. Euphytica, 137, 279–290.CrossRefGoogle Scholar
  6. Derycke, V., Haesaert, G., Latre, J., Struik, P. C. (2002, June/July). Relation between laboratory sprouting resistance tests and field observations in triticale genotypes. Proceedings of the 5th Triticale Symposium, Radzikow, Poland, pp. 123–133.Google Scholar
  7. Dill-Macky, R. (2003). Inoculation methods and evaluation of Fusarium head blight resistance in wheat. In P. E. Nelson, T. A. Toussoun, & R. J. Cook (Eds.), Fusarium: Diseases, biology and taxonomy (pp. 184–210). St Paul: APS Press.Google Scholar
  8. Fastnaught, C. E., Berglund, P. T., & Holm, E. T. (1996). Genetic and environmental variation in β-glucan content and quality parameters of barley for food. Crop Science, 36, 941–946.CrossRefGoogle Scholar
  9. Fox, G. P., Panozzo, J. F., Li, C. D., Lance, R. C. M., Inkerman, P. A., & Henry, R. J. (2003). Molecular basis or barley quality traits. Australian Journal of Agricultural Research, 54, 1081–1101.CrossRefGoogle Scholar
  10. Gubler, F., Hughes, T., Waterhouse, P., & Jacobsen, J. (2008). Regulation of dormancy in barley by blue light and after-ripening: Effects on abscisic acid and gibberellin metabolism. Plant Physiology, 147, 886–896.PubMedCrossRefGoogle Scholar
  11. Legzdina, L. (2001). Yield and grain quality of diverse origin hulless barley in Latvian growing conditions. Youth Seeks Progress’2001. Paper collection of scientific conference of Ph.D. students, pp. 74–78.Google Scholar
  12. Legzdina, L., & Buerstmayr, H. (2004). Comparison of infection with Fusarium head blight and accumulation of mycotoxins in grain of hulless and covered barley. Journal of Cereal Science, 40, 61–67.CrossRefGoogle Scholar
  13. Legzdina, L., Mezaka, I., & Beinarovica, I. (2010). Hulless barley (Hordeum vulgare L.) resistance to pre-harvest sprouting: Diversity and development of method for testing of breeding material. Agronomy Research, 8, 645–652.Google Scholar
  14. Li, J., Baga, M., Rossnagel, B. G., Legge, W. G., & Chibbar, R. N. (2008). Identification of quantitative trait loci for β-glucan concentration in barley grain. Journal of Cereal Science, 48, 647–655.CrossRefGoogle Scholar
  15. Ma, Z., Steffenson, B. J., Prom, L. K., & Lapitan, N. L. (2000). Mapping of quantitative trait loci for Fusarium head blight resistance in barley. Phytopathology, 90, 1079–1088.PubMedCrossRefGoogle Scholar
  16. McCarthy, J. J., Canziani, O. F., Leary, N. A., & Dokken, D. J. (2001). Climate change 2001: Impacts, adaptation, and vulnerability. intergovernmental panel on Climate Change (IPCC) Working Group II (p. 1005). Cambridge: Cambridge University Press.Google Scholar
  17. Mesfin, A., Smith, K. P., Dill-Macky, R., Evans, C. K., Waugh, R., Gustus, C. D., & Muehlbauer, G. J. (2003). Quantitative trait loci for Fusarium head blight resistance in barley detected in a two-rowed by six-rowed population. Crop Science, 43, 307–318.CrossRefGoogle Scholar
  18. Mezaka, I., Bleidere, M., Legzdina, L., & Rostoks, N. (2011). Whole genome association mapping identifies naked grain locus NUD as determinant of β-glucan content in barley. Žemdirbystė=Agriculture (in press).Google Scholar
  19. Nesvadba, Z., Vyhnanek, T., Jeziskova, I., Tvaruzek, L., Spunarova, M., & Spunar, J. (2006). Evaluation of spring barley genotypes with different susceptibility to Fusarium head blight using molecular markers. Plant, Soil and Environment, 52(11), 485–491.Google Scholar
  20. Rudd, J. C., Horsleyb, R. D., McKendryc, A. L., & Eliasb, E. M. (2001). Host plant resistance genes for Fusarium head blight sources, mechanisms, and utility in conventional breeding systems. Crop Science, 41, 620–627.CrossRefGoogle Scholar
  21. Semagn, K., Bjornstad, A., & Xu, Y. (2010). The genetic dissection of quantitative traits in crops. Electronic Journal of Biotechnology, 13(5), 1–14.CrossRefGoogle Scholar
  22. Takeda, K. (2004, June). Inheritance of the Fusarium head blight resistance in barley. Proceedings of the 9th International Barley Genetics Symposium, Brno, Czech Republic, pp. 302–307.Google Scholar
  23. Ullrich, S. E., Clancy, J. A., del Blanco, I., Lee, H., Jitkov, V. A., Han, F., Keinhofs, A., & Matsui, K. (2008). Genetic analysis of pre-harvest sprouting in a six-row barley cross. Molecular Breeding, 21, 249–259.CrossRefGoogle Scholar
  24. Xu, Y., & Crouch, J. H. (2008). Marker-assisted selection in plant breeding: from publications to practice. Crop Science, 48(2), 391–407.CrossRefGoogle Scholar
  25. Xu, Z., Zou, F., & Vision, T. (2005). Improving quantitative trait loci mapping resolution in experimental crosses by the use of genotypically selected samples. Genetics, 170, 401–410.PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University Press and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Linda Legzdina
    • 1
  • Mara Bleidere
    • 2
  • Guna Usele
    • 1
  • Daiga Vilcane
    • 1
  • Indra Beinarovica
    • 1
  • Ieva Mezaka
    • 1
  • Zaiga Jansone
    • 2
  • Nils Rostoks
    • 3
  1. 1.State Priekuli Plant Breeding InstitutePriekuliLatvia
  2. 2.State Stende Cereal Breeding Institute3258Latvia
  3. 3.Faculty of BiologyUniversity of LatviaRigaLatvia

Personalised recommendations