Advertisement

Meta-Didactical Transposition: A Theoretical Model for Teacher Education Programmes

  • Ferdinando Arzarello
  • Ornella Robutti
  • Cristina Sabena
  • Annalisa Cusi
  • Rossella Garuti
  • Nicolina Malara
  • Francesca Martignone
Chapter
Part of the Mathematics Education in the Digital Era book series (MEDE, volume 2)

Abstract

We propose a new model for framing teacher education projects that takes both the research and the institutional dimensions into account. The model, which we call Meta-didactical Transposition, is based on Chevallard’s anthropological theory and is complemented by relevant elements that focus on the specificity of both researchers’ and teachers’ roles, while enabling a description of the evolution of their praxeologies over time. The model is illustrated with examples from different Italian projects, and it is discussed in light of current major research studies in mathematics teacher education.

Keywords

Meta-Didactical Transposition Communities of inquiry Research for innovation within institutions • Teacher education practices Meta-didactical praxeologies Mathematics laboratory 

References

  1. Anichini, G., Arzarello, F., Ciarrapico, L., & Robutti, O. (Eds.). (2004). New mathematical standards for the school from 5 through 18 years, The curriculum of mathematics from 6 to 19 years, on behalf of UMI-CIIM, MIUR (edition for ICME 10). Bologna: UMI.Google Scholar
  2. Antonini, S., & Martignone, F. (2011). Argumentation in exploring mathematical machines: A study on pantographs. In Proceedings of the 35th conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 41–48). Ankara.Google Scholar
  3. Arzarello, F., & Bartolini Bussi, M. G. (1998). Italian trends in research in mathematics education: A national case study in the international perspective. In J. Kilpatrick & A. Sierpinska (Eds.), Mathematics education as a research domain: A search for identity (pp. 197–212). Dordrecht: Kluwer.Google Scholar
  4. Ball, D. L., & Bass, H. (2003). Toward a practice-based theory of mathematical knowledge for teaching. In B. Davis & E. Simmt (Eds.), Proceedings of the 2002 annual meeting of the Canadian Mathematics Education Study Group (pp. 3–14). Edmonton: CMESG/GDEDM.Google Scholar
  5. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407.CrossRefGoogle Scholar
  6. Bartolini Bussi, M. G., Taimina, D., & Isoda, M. (2010). Concrete models and dynamic instruments as early technology tools in classrooms at the dawn of ICMI: From Felix Klein to present applications in mathematics classrooms in different parts of the world. ZDM Mathematics Education, 42, 19–31. Springer.CrossRefGoogle Scholar
  7. Bartolini Bussi, M. G., Garuti, R., Martignone, F., & Maschietto, M. (2011). Tasks for teachers in the MMLab-ER Project. In Contribution to 35th conference of the International Group for the Psychology of Mathematics Education Research Forum (Vol.1, pp. 127–130). Ankara.Google Scholar
  8. Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artefacts and signs after a Vygotskian perspective. In L. English, M. Bartolini, G. Jones, R. Lesh, B. Sriraman, D. Tirosh (Eds.), Handbook of International research in Mathematics education (pp. 746–783). New York: Routledge Taylor & Francis Group.Google Scholar
  9. Bass, H. (2005). Mathematics, mathematicians, and mathematics education. Bulletin of the American Mathematical Society, 42(4), 417–430.CrossRefGoogle Scholar
  10. Boero, P., & Guala, E. (2008). Development of mathematical knowledge and beliefs of teachers. In Sullivan, P. & Wood, T. (Eds.), The international handbook of mathematics teacher education (Vol. 1, pp. 223–244). Purdue University/Sense Publishers: West Lafayette.Google Scholar
  11. Bosch, M.,& Chevallard, Y. (1999). La sensibilité de l’activité mathématique aux ostensifs. Objet d’étude et problematique. Recherches en Didactique des Mathématiques, 19(1), 77–124.Google Scholar
  12. Bowker, G. C., & Star, S. L. (1999). Sorting things out: Classification and its consequences. Cambridge, MA: MIT Press.Google Scholar
  13. Chevallard, Y. (1985). Transposition Didactique du Savoir Savant au Savoir Enseigné. Grenoble: La Pensée Sauvage Éditions.Google Scholar
  14. Chevallard, Y. (1992). Concepts fondamentaux de la didactique: perspectives apportées par une approche anthropologique. Recherches en Didactique des Mathématiques, 12(1), 73–112.Google Scholar
  15. Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique du didactique. Recherches en Didactique des Mathématiques, 19(2), 221–266.Google Scholar
  16. Clark, D., & Hollingsworth, H. (2002). Elaborating a model of teacher professional growth. Teaching and Teacher Education, 18, 947–967.CrossRefGoogle Scholar
  17. Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the craft of reading, writing, and mathematics. In L. B. Resnik (Ed.), Knowing, learning and instruction (pp. 453–494). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  18. Cusi, A., Malara, N. A., & Navarra, G. (2010). Early algebra: Theoretical issues and educational strategies for bringing the teachers to promote a linguistic and metacognitive approach to it. In J. Cai & E. Knuth (Eds.), Early algebrailization: Cognitive, curricular, and instructional perspectives (pp. 483–510).Google Scholar
  19. Drijvers, P., Kieran, C., & Mariotti, M. A. (2010). Integrating technology into mathematics education: Theoretical perspectives. Mathematics education and technology-rethinking the terrain. New ICMI study series (Vo1. 3, Part 2, pp. 89–132).Google Scholar
  20. Even, R., & Ball, D. L. (2009). The professional education and development of teachers of mathematics. Dordrecht: Springer.CrossRefGoogle Scholar
  21. García, F. J., Gascón, J., Ruiz Higueras, L., & Bosch, M. (2006). Mathematical modelling as a tool for the connection of school mathematics. ZDM, 38(3), 226–246.CrossRefGoogle Scholar
  22. Garuti, R. & Martignone, F. (2010). La formazione insegnanti nel progetto MMLab-ER, in Scienze e tecnologie in Emilia Romagna: Un nuovo approccio per lo sviluppo della cultura scientifica e tecnologica nella Regione Emilia-Romagna, Azione 1 a cura di Martignone, 73–97, Tecnodid.Google Scholar
  23. Guin, D., Ruthven, K., & Trouche, L. (Eds.). (2005). The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument. New York: Springer.Google Scholar
  24. Hegedus, S. J., & Moreno-Armella, L. (2009). Intersecting representation and communication infrastructures. ZDM: The International Journal on Mathematics Education., 41(4), 399–412.CrossRefGoogle Scholar
  25. Hoyles, C., & Lagrange, J.-B. (Eds.). (2009). Mathematical education and digital technologies: Rethinking the terrain (pp. 439–462). New York: Springer.Google Scholar
  26. Jaworski, B. (1998). Mathematics teacher research: Process, practice and the development of teaching. Journal of Mathematics Teacher Education, 1, 3–31.CrossRefGoogle Scholar
  27. Jaworski, B. (2003). Research practice into/influencing mathematics teaching and learning development: Towards a theoretical framework based on co-learning partnerships. Educational Studies in Mathematics, 54, 249–282.CrossRefGoogle Scholar
  28. Jaworski, B. (2006). Theory and practice in mathematics teaching development: Critical inquiry as a mode of learning in teaching. Journal of Mathematics Teacher, 9, 187–211.CrossRefGoogle Scholar
  29. Jaworski, B. (2008). Building and sustaining inquiry communities in mathematics teaching development. In K. Krainer & T. Wood (Eds.), Participants in mathematics teacher education (pp. 309–330).Google Scholar
  30. Lagrange, J.-B., Artigue, M., Laborde, C., & Trouche, L. (2003). Technology and mathematics education: A multidimensional study of the evolution of research and innovation. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Second international handbook of mathematics education (pp. 239–271). Dordrecht: Kluwer.Google Scholar
  31. Malara, N. A. (2008). Methods and tools to promote a socio-constructive approach to mathematics teaching in teachers. In B. Czarnocha (Ed.), Handbook of mathematics teaching research (pp. 89–102). Rzeszòw: University Press.Google Scholar
  32. Malara, N. A., & Navarra, G. (2003). ArAl project: Arithmetic pathways towards pre-algebraic thinking. Bologna: Pitagora.Google Scholar
  33. Malara, N. A, & Navarra, G. (2011). Multicommented transcripts methodology as an educational tool for teachers involved in early algebra. In M. Pytlak, E. Swoboda (Eds.), Proceedings of CERME 7 (pp. 2737–2745). Poland: University of Rzezsow.Google Scholar
  34. Malara, N. A., & Zan, R. (2002). The problematic relationship between theory and practice. In L. English (Ed.), Handbook of international research in mathematics education (pp. 553–580). Mahwah: LEA.Google Scholar
  35. Martignone, F. (Ed.) (2010). MMLab-ER: Laboratori delle macchine matematiche per l’Emilia Romagna, Az. 1. In USR E-R & Regione Emilia-Romagna, Scienze e Tecnologie in Emilia-Romagna (pp. 16–210). Napoli: Tecnodid, [Adobe Digital Editions version]. Retrieved from: http://www.mmlab.unimore.it/online/Home/ProgettoRegionaleEmiliaRomagna/RisultatidelProgetto/LibroProgettoregionale/documento10016366.html
  36. Martignone, F. (2011). Tasks for teachers in mathematics laboratory activities: A case study. In Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 193–200). Ankara: PME.Google Scholar
  37. Mason, J. (1998). Enabling teachers to be real teachers: Necessary levels of awareness and structure of attention. Journal of Mathematics Teacher Education, 1, 243–267.CrossRefGoogle Scholar
  38. Mason, J. (2002). Researching your own practice: The discipline of noticing. London: The Falmer Press.Google Scholar
  39. Mason, J. (2008). Being mathematical with and in front of learners. In B. Jaworski & T. Wood (Eds.), The mathematics teacher educator as a developing professional (pp. 31–55). Rotterdam: Sense Publishers.Google Scholar
  40. Rapporto PON M@t.abel 2009–10: Rapporto sui risultati preliminari sugli effetti del Programma PON M@t.abel 2009/2010 http://www.invalsi.it/invalsi/ri/matabel/Documenti/Report_Diari_di_bordo.pdf
  41. Rasmussen, C., Zandieh, M., & Wawro, M. (2009). How do you know which way the arrows go? The emergence and brokering of a classroom mathematics practice. In W.-M. Roth (Ed.), Mathematical representations at the interface of the body and culture (pp. 171–218). Charlotte: Information Age Publishing.Google Scholar
  42. Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H., & Hemmo, V. (2007). Science education now: A renewed pedagogy for the future of Europe. European Commission. http://ec.europa.eu/research/science-society/document_library/pdf_06/report-rocard-on-science-education_en.pdf
  43. Schoenfeld, A. (1998). Toward a theory of teaching in context. Issues in Education, 4(1), 1–94.CrossRefGoogle Scholar
  44. Schön, D. A. (1987). Educating the reflective practicioner: Toward a new design for teaching and learning in the professions. San Francisco: Jossey-Bass.Google Scholar
  45. Sfard, A. (2005). What could be more practical than good research? On mutual relations between research and practice of mathematics education. Educational Studies in Mathematics, 58(3), 393–413.CrossRefGoogle Scholar
  46. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.CrossRefGoogle Scholar
  47. Simon, M. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26, 114–145.CrossRefGoogle Scholar
  48. Sullivan, P. (2008). Knowledge for teaching mathematics: An introduction. In P. Sullivan & T. Wood (Eds.), The international handbook of mathematics teacher education, Vol. 1, Knowledge and beliefs in mathematics teaching and teaching development (pp. 1–12). Rotterdam: Sense Publisher.Google Scholar
  49. Trouche, L. (2005). Instrumental genesis, individual and social aspects. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The didactical challenge of symbolic calculators. Berlin: Springer. Cap. 6.Google Scholar
  50. Vygotsky, L. S. (1978). Mind in society. The development of higher psychological processes. Cambridge, MA/London: Harvard University Press. Edited by M. Cole, V. John-Steiner, S. Scribner & E. Souberman.Google Scholar
  51. Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  52. Wood, T. (Ed.). (2008). The international handbook of mathematics teacher education (Vol. 1–4). West Lafayette: Purdue University/Sense Publishers.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ferdinando Arzarello
    • 1
  • Ornella Robutti
    • 1
  • Cristina Sabena
    • 1
  • Annalisa Cusi
    • 2
  • Rossella Garuti
    • 2
  • Nicolina Malara
    • 2
  • Francesca Martignone
    • 2
  1. 1.Dipartimento di MatematicaUniversità di TorinoTurinItaly
  2. 2.Università di Modena e Reggio EmiliaModenaItaly

Personalised recommendations