Cement Microstructures and Durability in Ancient Roman Seawater Concretes

  • Marie D. Jackson
  • Gabriele Vola
  • Dalibor Všianský
  • John P. Oleson
  • Barry E. Scheetz
  • Christopher Brandon
  • Robert L. Hohlfelder
Conference paper
Part of the RILEM Bookseries book series (RILEM, volume 7)

Abstract

Roman hydraulic maritime concretes of the central Italian coast have pumiceous volcanic ash, or pulvis Puteolanus, from the Bay of Naples as mortar pozzolan. Petrographic and mineralogical analyses of cement microstructures in relict lime, tuff, and pumice clasts suggest that pozzolanic reaction at high pH produced gel-like calcium-aluminum-silica-hydrate cements. Orthorhombic 11 Å-tobermorite, with unit cell dimensions a = 5.591(1)Å, b = 3.695(1)Å, c = 22.86(1)Å, developed in the residual cores of portlandite clasts and in certain pumiceous clasts, as well. Ettringite and calcium-chloroaluminate formed in discrete, perimetral microstructures and in the cementitious matrix. Phillipsite and chabazite cements may reflect later dissolution of alkali-rich volcanic glass at pH 9–10. The cement systems have remained stable for 2,000 years, during partial to full immersion in seawater. Vitruvius’ De architectura and other ancient texts describe the raw materials of the concretes, preparation of lime, and construction of submerged wooden forms. Information concerning the materials, formulations, and installations of the concretes was apparently spread by movement of central Italian engineers around the Mediterranean but also, perhaps, by the circulation of sub-literary engineering manuals. Further analytical investigations will determine the diverse chemical processes that produced the cement microstructures, and why the harbour constructions have endured for two millennia.

Keywords

Coarse Aggregate Cementitious Matrix Pozzolanic Reaction Pumice Clast Plane Polarize Light 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank U. Costa and F. Massazza at CTG Italcementi, and H.-R. Wenk and P. J. M. Monteiro, at University of California at Berkeley, for discussions regarding cement chemistry. B. Zanga, N. Colombi, M. Segata, C. Kosso, T. Hoisch, and B. Black assisted with this research. The Loeb Foundation at Harvard University and Project No: MSM 0021622427 at Masaryk University provided funding.

References

  1. 1.
    Oleson, J.P., Brandon, C., Cramer, S., et al.: The ROMACONS project: a contribution to the historical and engineering analysis of hydraulic concrete in Roman maritime structure. Int. J. Naut. Archaeol. 33, 199–229 (2004)CrossRefGoogle Scholar
  2. 2.
    Brandon, C., Hohlfelder, R.L., Oleson, J.P., et al.: The Roman Maritime Concrete Study (ROMACONS). the roman harbour of chersonisos in crete and its italian connection. Mediterranée 1(2), 25–29 (2005)Google Scholar
  3. 3.
    Hohlfelder, R.L., Brandon, C., Oleson, J.P.: Constructing the harbour of caesarea palaestina. Int. J. Naut. Archaeol. 36, 409–415 (2007)CrossRefGoogle Scholar
  4. 4.
    Brandon, C., Hohlfelder, R.L., Oleson, J.P.: The concrete construction of the roman harbours of baiae and portus iulius. Int. J. Naut. Archaeol. 37, 374–379 (2008)CrossRefGoogle Scholar
  5. 5.
    Vola, G., Jackson, M., Oleson, J.P., et al.: Mineralogical and petrographic characterisation of ancient Roman maritime concretes from Mediterranean Harbours. In: Valek, J., Groot, C., Hughes, J. (eds.) Proceedings of the 2nd Historic Mortars Conference and RILEM TC 203-RHM Final Workshop, pp. 381–388. Prague, 22–24 September 2010Google Scholar
  6. 6.
    Vola, G., Gotti, E., Brandon, C., et al.: Chemical, mineralogical and petrographic characterisation of ancient Roman hydraulic concrete cores from Santa Liberata, Grosetto, Italy and Cesarea Palestina, Israel. Period. Miner. 80(2), 99–120 (2011)Google Scholar
  7. 7.
    Oleson, J.P., Bottalico, L., Brandon, C., et al.: Reproducing a Roman maritime concrete structure with Vitruvian pozzolanic concrete. J. Rom. Archaeol. 19, 29–52 (2006)Google Scholar
  8. 8.
    Gotti, E., Oleson, J.P., Bottalico, L., et al.: A comparison of the chemical and engineering characteristics of ancient Roman hydraulic concrete with a modern reproduction of Vitruvian hydraulic concrete. Archaeometry 50, 576–590 (2008)CrossRefGoogle Scholar
  9. 9.
    Siivola, J., Schmid, R.: List of mineral abbreviations. http://www.bgs.ac.uk/scmr/docs/papers/paper_12.pdf (2007)
  10. 10.
    Mehta, P.K., Monteiro, P.J.M.: Concrete: microstructure, properties, materials. McGraw-Hill, New York (2006)Google Scholar
  11. 11.
    Massazza, F.: Concrete resistance to seawater and marine environment. Il Cem. 1, 3–26 (1985)Google Scholar
  12. 12.
    Mehta, P.K.: Concrete in the marine environment. Elsevier, Oxford (1990)Google Scholar
  13. 13.
    Massazza, F.: Properties and applications of natural pozzolanas. In: Bensted, J., Barnes, P. (eds.) Structure and performance of cements, pp. 326–352. Taylor & Francis, London (2002)Google Scholar
  14. 14.
    Glasser, F.P., Marchand, J., Samson, E.: Durability of concrete–degradation phenomena involving detrimental chemical reactions. Cem. Concr. Res. 38, 226–246 (2008)CrossRefGoogle Scholar
  15. 15.
    De’Gennaro, M., Cappelletti, P., Langella, A., et al.: Genesis of zeolites in the neapolitan yellow tuff: geological, volcanological and mineralogical evidence. Contrib. Mineral. Petrol. 139, 17–35 (2000)CrossRefGoogle Scholar
  16. 16.
    Jackson, M.D., Marra, F., Hay, R.L., et al.: The judicious selection and preservation of tuffs and travertine building stone in ancient Rome. Archaeometry 47, 485–510 (2005)CrossRefGoogle Scholar
  17. 17.
    Brandon, C.: How did the Romans form concrete underwater? In: Valek, J., Groot, C., Hughes, J. (eds.) Proceedings of the 2nd Historic Mortars Conference and RILEM TC 203-RHM Final Workshop, pp. 73–81. Prague, 22–24 September 2010Google Scholar
  18. 18.
    Brandon, C.: The concrete-filled barges of King Herod’s harbor of sebastos. In: Swiny, S., Hohlfelder, R.L., Swiny, H.W. (eds.) Res maritimae, Cyprus and the eastern Mediterranean from prehistory to late antiquity, pp. 45–58. Scholars Press, Atlanta (1997)Google Scholar
  19. 19.
    Oleson, J., Jackson, M.: How did expertise in maritime hydraulic concrete spread through the Roman empire? In: Valek, J., Groot, C., Hughes, J. (eds.) Proceedings of the 2nd Historic Mortars Conference and RILEM TC 203-RHM Final Workshop, pp. 285–282. Prague, 22–24 September 2010Google Scholar
  20. 20.
    Shaw, J.: Greek and roman harborworks. In: Bass, G. (ed.) A history of seafaring based on underwater archaeology, pp. 87–112. Walker, New York (1972)Google Scholar
  21. 21.
    Hamid, S.A.: The crystal structure of 11Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5] 1H2O. Z Krist. 154, 189–198 (1981)CrossRefGoogle Scholar
  22. 22.
    Jakobsson, S., Moore, J.G.: Hydrothermal minerals and alteration rates at Surtsey volcano, Iceland. Geol. Soc. Am. Bull. 97, 648–659 (1986)CrossRefGoogle Scholar
  23. 23.
    Hay, R.L.: Phillipsite in saline lakes and soils. Am. Mineral. 49, 1366–1387 (1964)Google Scholar
  24. 24.
    Sheppard, R.A., Gude, A.J., Griffin, J.J.: Chemical composition and physical properties of phillipsite from the Pacifiic and Indian oceans. Am. Mineral. 55, 2053–2062 (1970)Google Scholar
  25. 25.
    Hay, R.L.: Geologic occurrence of zeolites. In: Sand, L.B., Mumpton, F.A. (eds.) Natural zeolites, occurrence, properties, and use. Pergamon, Oxford (1978)Google Scholar
  26. 26.
    Passaglia, E., Vezzalini, G.: Crystal chemistry of diagenetic zeolites in volcanoclastic deposits of Italy. Contrib. Mineral. Petrol. 90, 190–198 (1985)CrossRefGoogle Scholar
  27. 27.
    Lea, F.M.: Chemistry of cement and concrete, 2nd edn. Arnold, London (1970)Google Scholar
  28. 28.
    Barnes, M.W., Scheetz, B.E.: The chemistry of Al-tobermorite and its co-existing phases at 175°C. In: Scheetz, B.E., et al. (eds.) Specialty cements with advanced properties. Materials Research Society Symposia Proceedings, vol. 179, pp. 243–271. Materials Research Society, Pittsburgh (1991)Google Scholar
  29. 29.
    Marullo, S., Santoleria, R., Bignami, F.: Seasonal and interannual variability of the western mediterranean sea. Coast. Estuar. Stud 46, 135–154 (1994)CrossRefGoogle Scholar
  30. 30.
    Jackson, M., Deocampo, D., Marra, F., et al.: Mid-pleistocene Pozzolanic volcanic Ash in ancient Roman concretes. Geoarchaeology 25(1), 36–74 (2010)CrossRefGoogle Scholar
  31. 31.
    Leslie, A.B., Hughes, J.J.: Binder microstructure in lime mortars: implications for the interpretations of analysis results. Q. J. Eng. Geol. Hydrogeol. 35, 257–263 (2002)CrossRefGoogle Scholar
  32. 32.
    Forster, A.: Hot-lime mortars: a current perspective. J. Archit. Conserv. 3, 7–27 (2004)Google Scholar
  33. 33.
    Elsen, J.: Microscopy of historic mortars–a review. Cem. Concr. Res. 36, 1416–1424 (2006)CrossRefGoogle Scholar
  34. 34.
    Valek, J., Zeman, A.: Characteristics of lime particles in hot mixed mortars. In: Proceedings of the 12th Euroseminar on Microscopy Applied to Building Materials, Dortmund, 15–19 September 2009Google Scholar
  35. 35.
    Scheetz, B., Loop, C., White, W., et al.: Diagenesis of FBC ash in an acidic pit lake. http://www.dep.state.pa.us/dep/deputate/minres/BMR/beneficial_use/19CHAPT11/Chapter11.pdf (2004)
  36. 36.
    Merlino, S., Bonaccorsi, E., Armbruster, T.: The real structure of tobermorite 11Å: normal and anomalous forms, OD character and polytypic modifications. Eur. J. Mineral. 13, 577–590 (2001)CrossRefGoogle Scholar
  37. 37.
    Moroloupo, A., Bakolas, A., Biskibou, K.: Characterization of ancient, byzantine, and later historic mortars by thermal and X-ray diffraction techniques. Thermochim. Acta 269/270, 779–795 (1995)CrossRefGoogle Scholar
  38. 38.
    Charola, A.E., Henriques, F.M.A.: Hydraulicity in lime mortars revisited. In: Historic Mortars: characteristics and tests, RILEM TC-197COM, Paisley, Scotland (2000)Google Scholar
  39. 39.
    Cantisani, E., Cecchi, A., Chiaverini, I., et al.: The binder of the Roman concrete of the Ponte di Augusto at Narni (Italy). Period. Mineral. 71, 113–123 (2002)Google Scholar
  40. 40.
    Birnin-Yauri, U.A., Glasser, F.P.: Friedel’s salt, Ca2Al(OH)6(Cl, OH)z2H2O: its solid solutions and their role in chloride binding. Cem. Concr. Res. 28, 1713–1723 (1998)CrossRefGoogle Scholar
  41. 41.
    Sersale, R., Orsini, P.G.: Hydrated phases after reaction of lime with ‘pozzolanic’ materials or with blastfurnace slags. In: Proceedings, Fifth International Symposium on the Chemistry of Cement, pp. 114–121. Tokyo (1969)Google Scholar
  42. 42.
    Meiggs, R.: Roman Ostia, 2nd edn. Oxford University Press, Oxford (1973)Google Scholar
  43. 43.
    Oleson, J.P.: Well-pumps for dummies: was there a Roman tradition of popular, Sub-literary engineering manuals? In: Minonzio, F. (ed.) Problemi di Macchinismo in Ambito Romano. Museo Comunale, Como (2004)Google Scholar

Copyright information

© RILEM 2012

Authors and Affiliations

  • Marie D. Jackson
    • 1
  • Gabriele Vola
    • 2
  • Dalibor Všianský
    • 3
  • John P. Oleson
    • 4
  • Barry E. Scheetz
    • 5
  • Christopher Brandon
    • 6
  • Robert L. Hohlfelder
    • 7
  1. 1.Department of Civil and Environmental EngineeringUniversity of California at BerkeleyBerkeleyUSA
  2. 2.CTG ItalcementiBergamoItaly
  3. 3.Institute of Geological SciencesMasaryk UniversityBrnoCzech Republic
  4. 4.Department of ClassicsUniversity of VictoriaVictoriaCanada
  5. 5.Larson Transportation InstitutePennsylvania State UniversityUniversity ParkUSA
  6. 6.Pringle Brandon ArchitectsLondonUK
  7. 7.Department of HistoryUniversity of ColoradoBouderUSA

Personalised recommendations