Application of 1H NMR to the Hydration Monitoring of Lime-Pozzolan Mortars

  • Maria Tziotziou
  • Eleni Karakosta
  • Ioannis Karatasios
  • Michalis Fardis
  • Pagona Maravelaki-Kalaitzaki
  • Georgios Papavassiliou
  • Vassilis Kilikoglou
Conference paper
Part of the RILEM Bookseries book series (RILEM, volume 7)


The micro-structural evolution of a lime-pozzolan system, during hydration, was studied by 1H Nuclear Magnetic Resonance (NMR). The hydration process was monitored for a period of 1 year by 1H NMR spin-lattice relaxation measurements, performed in a portable magnet. The development of the hydration was also examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), mercury intrusion porosimetry (MIP), infrared spectroscopy (FT-IR) and thermal analysis (DTA/TG) and compared with the NMR results. The results indicated that 1H NMR provides valuable information on the hydration process of lime-pozzolan mortars in a non-invasive way, as it was possible to monitor the development of the hydration phases through the resulted microstructure, in real-time.


Nuclear Magnetic Resonance Hydration Process Mercury Intrusion Porosimetry Nuclear Magnetic Resonance Relaxometry Mercury Intrusion Porosimetry Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Holmstrom, I.: Mortars. In: Proceedings of the ICCROM Symposium Mortars, Cements and Grouts Used in the Conservation of Historic Buildings, ICCROM, Rome (1981)Google Scholar
  2. 2.
    Cerny, R., Kunca, A., Tydlitat, V., et al.: Effect of pozzolanic admixtures on mechanical, thermal and hygric properties of lime plasters. Constr. Build Mater. 20, 849–857 (2006)CrossRefGoogle Scholar
  3. 3.
    Velosa, A., Cachim, P.: Eco-concrete: preliminary studies for concretes based on hydraulic lime. In: SB07 Lisbon – Sustainable Construction, Materials and Practices: Challenge of the Industry for the New Millennium. (2008). Accessed 1 Mar 2010
  4. 4.
    Rehan, R., Nehdi, M.: Carbon dioxide emissions and climate change: policy implications for the cement industry. Environ. Sci. Policy 8, 105–114 (2005)CrossRefGoogle Scholar
  5. 5.
    Massazza, F.: Pozzolana and pozzolanic cements. In: Hewlett, P.C. (ed.) Lea’s Chemistry of Cement and Concrete, 4th edn. Elsevier Butterworth-Heinemann, Oxford (2004)Google Scholar
  6. 6.
    Blinc, R., Lahajnar, G., Zumer, S., et al.: NMR study of the time evolution of the fractal geometry of cement gels. Phys. Rev. B 38, 2873–2875 (1988)CrossRefGoogle Scholar
  7. 7.
    Schreiner, L.J., Mactavish, J.C., Miljkovic, L., et al.: NMR line shape-spin-lattice relaxation correlation study of Portland cement hydration. J. Am. Ceram. Soc. 68, 10–16 (1985)CrossRefGoogle Scholar
  8. 8.
    Plassais, A., Pomies, M.-P., Lequeux, N., et al.: Micropore size analysis by NMR in hydrated cement. Magn. Reson. Imaging 21, 369–371 (2003)CrossRefGoogle Scholar
  9. 9.
    Papavassiliou, G., Fardis, M., Laganas, E., et al.: Role of the surface morphology in cement gel growth dynamics: a combined nuclear magnetic resonance and atomic force microscopy study. J. Appl. Phys. 82, 449–452 (1997)CrossRefGoogle Scholar
  10. 10.
    Fardis, M., Papavassiliou, G., Abulnasr, L., et al.: Effect of clay minerals on the hydration of cement. An NMR study. Adv. Cem. Based Mater. 1, 243–247 (1994)CrossRefGoogle Scholar
  11. 11.
    Blinc, R., Dolinsek, J., Lahajnar, G., et al.: Spin-lattice relaxation of water in cement gels. Z. Naturforsch. 43a, 1026–1038 (1988)Google Scholar
  12. 12.
    Holly, R., Reardon, E.J., Hansson, C.M., et al.: Proton spin-spin relaxation study of the effect of temperature on white cement hydration. J. Am. Ceram. Soc. 90, 570–578 (2007)CrossRefGoogle Scholar
  13. 13.
    Laganas, E., Papavassiliou, G., Fardis, M., et al.: Analysis of complex 1H nuclear magnetic resonance relaxation measurements in developing porous structures: a study in hydrating cement. J. Appl. Phys. 77, 3343–3348 (1995)CrossRefGoogle Scholar
  14. 14.
    Blumich, B., Perlo, J., Casanova, F.: Mobile single-sided NMR. Prog. Nucl. Magn. Reson. Spectrosc. 52, 197–269 (2008)CrossRefGoogle Scholar
  15. 15.
    Lasic, D.D., Corbett, J.M., Jiant, J., et al.: NMR spin grouping in hydrating cement at 200 MHz. Cem. Concr. Res. 18, 649–653 (1988)CrossRefGoogle Scholar
  16. 16.
    EN 1015–3: Methods of test for mortar for masonry – Part 3: Determination of consistence of fresh mortar (by flow table). European Committee for Standardization (1999)Google Scholar
  17. 17.
    EN 196–1: Methods of testing cement – Part 1: Determination of strength. European Committee for Standardization (1994)Google Scholar
  18. 18.
    Karakosta, E., Diamantopoulos, G., Katsiotis, M.S., et al.: In situ monitoring of cement gel growth dynamics. Use of a miniaturized permanent Halbach magnet for precise 1H NMR studies. Ind. Eng. Chem. Res. 49, 613–622 (2010)CrossRefGoogle Scholar
  19. 19.
    Payá, J., Monzó, J., Borrachero, M.V., et al.: Determination of the pozzolanic activity of fluid catalytic cracking residue. Thermogravimetric analysis studies on FC3R–lime pastes. Cem. Concr. Res. 33, 1085–1091 (2003)CrossRefGoogle Scholar
  20. 20.
    Budak, M., Maravelaki-Kalaitzaki, P., Kallithrakas-Kontos, N.: Chemical characterization of Cretan clays for the design of restoration mortars. Microchim. Acta 162, 325–331 (2008)CrossRefGoogle Scholar
  21. 21.
    Ubbriaco, P., Traini, A., Manigrassi, D.: Characterization of FDR fly ash and brick/lime mixtures. J. Therm. Anal. Calorim. 92, 301–305 (2008)CrossRefGoogle Scholar
  22. 22.
    Nestle, N.A.: Simple semiempiric model for NMR relaxometry data of hydrating cement pastes. Cem. Concr. Res. 34, 447–454 (2004)CrossRefGoogle Scholar
  23. 23.
    Provencher, S.W.: A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun. 27, 213–222 (1982)CrossRefGoogle Scholar

Copyright information

© RILEM 2012

Authors and Affiliations

  • Maria Tziotziou
    • 1
    • 2
  • Eleni Karakosta
    • 1
  • Ioannis Karatasios
    • 1
  • Michalis Fardis
    • 1
  • Pagona Maravelaki-Kalaitzaki
    • 2
  • Georgios Papavassiliou
    • 1
  • Vassilis Kilikoglou
    • 1
  1. 1.Institute of Materials ScienceNational Centre of Scientific Research “Demokritos”AthensGreece
  2. 2.Analytical and Environmental Chemistry LabTechnical University of CreteChaniaGreece

Personalised recommendations