Morphological and Chemical Influence of Calcium Hydroxide on the Plasticity of Lime Based Mortars

  • Deborah Klein
  • Sonja Haas
  • Sven-Olaf Schmidt
  • Bernhard Middendorf
Conference paper
Part of the RILEM Bookseries book series (RILEM, volume 7)


The influence of slaked limes (calcium hydroxide) on the fresh mortar properties varies according to morphological and chemical characteristics of the raw material. Until now there have been no sufficient scientific results to describe the parameters of calcium hydroxide that modify the plasticity in mortar systems. The aim of the investigations carried out here is to determine these plasticity regulating parameters. Therefore, several calcium hydroxides from different manufacturers have been analysed. The analyses included characterisation of raw materials and detailed investigations of differently slaked lime and lime putty at different times. Chemical and morphological principles of plasticity have been identified. Furthermore, these results have been evaluated by correlation of pilot plant experiments with defined lime mortars regarding their workability. The resulting material parameters responsible for plasticity are pointed out and distinguished between parameters relevant for plasticity values and those for plasticity development after extended soaking time.


Pore Size Distribution Calcium Hydroxide Hydrated Lime Calcium Lime Lime Mortar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research project AiF-No. 15.650 N “Influence of the morphology of hydrated lime on the plasticity properties of mortar systems” is promoted by the Federal Ministry for Economic Affairs and the Federation of Industrial Research Associations (AiF) and performed by the Association for the Research Foundation of lime and mortar, Cologne, and the Department of Building Materials at TU Dortmund University.


  1. 1.
    Emley, W.E.: Measurement of plasticity of mortars and plasters. Technologic papers of the Bureau of standards, No. 169, 27 S (1920)Google Scholar
  2. 2.
    Ney, P.: Physikochemische Grundlagen der Bildsamkeit von Kalken unter Einbeziehung des Begriffs der aktiven Oberfläche. Forschungsberichte des Wirtschafts- und Verkehrministerium NRW, 528, 80 S, Köln (1958)Google Scholar
  3. 3.
    Wuhrer, J., Radermacher, G., Zager, L.: Hydratationsmechanismus des Calciumoxyds und plastische Eigenschaften der Kalkhydratbreie. Zement-Kalk-Gips 10, 456–466 (1959). WiesbadenGoogle Scholar
  4. 4.
    Kreutz, M., Schimmel, G.: Löschversuche an Branntkalk mit Wasserdampf. Zement-Kalk–Gips 10, 471–477 (1959). WiesbadenGoogle Scholar
  5. 5.
    Zander, H. et al.: Arbeitsergebnisse und Probleme auf dem Gebiet des Löschens. Interner Bericht liegt vor. Bericht über die Tätigkeit des Löschausschusses der deutschen Kalkindustrie 15 Nov 1960Google Scholar
  6. 6.
    Krumnacher, P.J.: Lime and cement technology: Transition from traditional to standardized treatment methods. Master of Science thesis paper, Faculty of the Virginia Polytechnic Institute, 90 S, Blacksburg (2001)Google Scholar
  7. 7.
    Thomson, M.: Properties of lime mortar. Structure Magazine, pp. 26–29. Reedsburg (2005)Google Scholar
  8. 8.
    Pavia, S., Treacy, E.: A comparative study of the durability and behaviour of fat lime and feebly-hydraulic lime mortars. Mater. Struct. 39, 391–398 (2006)CrossRefGoogle Scholar
  9. 9.
    Mira, P., Papadakis, V.G., Tsimas, S.: Effect of lime putty addition on structural and durability properties of concrete. Cem. Concr. Res. 32, 683–689 (2002)CrossRefGoogle Scholar
  10. 10.
    Deutsches Institut für Normung: DIN EN 459-1 – Baukalk – Teil 1: Definitionen, Anforderungen und Konformitätskriterien. Beuth-Verlag, Berlin (2010)Google Scholar
  11. 11.
    American Society for Testing and Materials: Standard test methods for physical testing of quicklime, hydrated lime, and limestone – ASTM C110-02a (2002)Google Scholar
  12. 12.
    Deutsches Institut für Normung: Determination of the specific surface area of solids by gas adsorption using the BET method. Beuth Verlag, Berlin (2003)Google Scholar
  13. 13.
    Gmelin-Institut (Hrsg.): Gmelins Handbuch der anorganischen Chemie – System-Nummer 28. Verlag Chemie, Weinheim (1957)Google Scholar

Copyright information

© RILEM 2012

Authors and Affiliations

  • Deborah Klein
    • 1
  • Sonja Haas
    • 2
  • Sven-Olaf Schmidt
    • 2
  • Bernhard Middendorf
    • 1
  1. 1.Technische Universität DortmundDortmundGermany
  2. 2.Forschungsgemeinschaft Kalk und Mörtel e.V.CologneGermany

Personalised recommendations