The Hydration of Modern Roman Cements Used for Current Architectural Conservation

  • Christophe Gosselin
  • Karen L. Scrivener
  • Steven B. Feldman
  • Wolfgang Schwarz
Conference paper
Part of the RILEM Bookseries book series (RILEM, volume 7)


Roman cement was extensively used to decorate façades during the nineteenth and at the beginning of the twentieth century. Interest in this material has revived recently for the conservation of architectural Cultural Heritage, using new production sources. This article gives preliminary results on the characterisation of the raw materials and the main reactive phases (using XRD, SEM, selective dissolution and isothermal calorimetry) of a Roman cement recently produced from the Lilienfeld marlstone (Austria), compared with a commercial Roman cement (Vicat, France). The mineralogical composition of the two cements differs strongly due to the presence of sulphate minerals in the marlstone and on the temperature of calcination. Isothermal calorimetry and in-situ XRD carried out on cement pastes allow the identification of the AFm and AFt type phases as early age hydration products responsible for the flash setting typical to Roman cements. The alumina rich composition and the polymorphs of dicalcium silicates is strongly different in the Lilienfeld cement. This influences their reactivity at the later ages.


Calcium Silicate Cement Paste Calcium Aluminate Selective Dissolution Free Lime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was initiated in the frame of the Rocare project (EU 226898) and financially supported by the European Commission (FP7-ENV-2008-1 program).


  1. 1.
    Royer, A.: Le “ciment romain” en France: un matériau du XIXe siècle méconnu. Monumental Semester 2, 90–95 (2006)Google Scholar
  2. 2.
    Hughes, D.C., Swann, S., Gardner, A.: Roman cement: part one: its origins and properties. J. Archit. Conserv. 13(1), 21–36 (2007)Google Scholar
  3. 3.
    Blezard, R.G.: History of calcareous cement, Chapter 1. In: Hewlett, P.C. (ed.) Lea’s Chemistry of Cement and Concrete, 4th edn. Edward Arnold, London (1998)Google Scholar
  4. 4.
    Weber, J., Gadermayr, N., Bayer, K., et al.: Roman cement mortars in Europe’s architectural heritage of the 19th century. ASTM Spec. Tech. Publ. 1494, 69–83 (2008)Google Scholar
  5. 5.
    Weber, J., Gadermayr, N., Kozlowski, R., et al.: Microstructure and mineral composition of Roman cements produced at defined calcination conditions. Mater. Charact. 58(11–12), 1217–1228 (2007)CrossRefGoogle Scholar
  6. 6.
    Hughes, D.C., Swann, S., Gardner, A.: Roman cement – Part Two: stucco and decorative elements, a conservation strategy. J. Archit. Conserv. 13(3), 41–58 (2007)Google Scholar
  7. 7.
    Adamski, G., Bratasz, L., Kozlowski, R., et al.: Roman cement – key historic material to cover the exteriors of buildings. In: Groot, C. (ed.) Workshop Repair Mortars for Historic Masonry, pp. 2–11. RILEM, Delft (2006)Google Scholar
  8. 8.
    Gosselin, C., Verges-Belmin, V., Royer, A., et al.: Natural cement and monumental restoration. Mater. Struct./Materiaux et Constructions 42(6), 749–763 (2009)CrossRefGoogle Scholar
  9. 9.
    Cailleux, E., Marie-Victoire, E., Sommain, D.: Study of natural cements from the French Rhône-Alpes region. In: Proceedings of the International Conference on Heritage, Weathering and Conservation, HWC 2006, pp. 77–84 (2006)Google Scholar
  10. 10.
    Sommain, D.: La durabilité des bétons de ciment prompt naturel, Chapitre 15. In: ENPC (ed.) La durabilité des bétons, 2nd edn Presses de l’école nationale des Ponts et Chaussées (ENPC) (2008)Google Scholar
  11. 11.
    Avenier, C., Rosier, B., Sommain, D.: Ciment naturel. Glénat, Grenoble (2007)Google Scholar
  12. 12.
    Hughes, D.C., Jaglin, D., Kozlowski, R., et al.: Calcination of marls to produce Roman cement. J. ASTM Int. 4(1) (2007)Google Scholar
  13. 13.
    Hughes, D.C., Jaglin, D., Kozlowski, R., et al.: Roman cements – belite cements calcined at low temperature. Cem. Concr. Res. 39(2), 77–89 (2009)CrossRefGoogle Scholar
  14. 14.
    Hughes, D.C., Sugden, D.B., Jaglin, D., et al.: Calcination of Roman cement: a pilot study using cement-stones from Whitby. Construct. Build Mater. 22(7), 1446–1455 (2008)CrossRefGoogle Scholar
  15. 15.
    Tislova, R., Kozlowska, A., Kozlowski, R., et al.: Porosity and specific surface area of Roman cement pastes. Cem. Concr. Res. 39(10), 950–956 (2009)CrossRefGoogle Scholar
  16. 16.
    Stutzman, P.E., Leigh, S.: Phase Composition Analysis of the NIST Reference Clinkers by Optical Microscopy and X-ray Powder Diffraction. NIST Technical Note 1441 (2002)Google Scholar
  17. 17.
    Costoya, M.M.: Effect of particle size on the hydration kinetics and microstructural development of tricalcium silicate. PhD, Ecole Polytechnique Fédérale de Lausanne (2008)Google Scholar
  18. 18.
    Taylor, H.F.W.: Cement Chemistry. Thomas Telford Publishing, London (1997)CrossRefGoogle Scholar
  19. 19.
    Bolio-Arceo, H., Glasser, F.P.: Formation of spurrite, Ca5(SiO4)2CO3. Cem. Concr. Res. 20(2), 301–307 (1990)CrossRefGoogle Scholar
  20. 20.
    Vyskocilova, R., Schwarz, W., Mucha, D., et al.: Hydration processes in pastes of Roman and American natural cements. ASTM Spec. Tech. Publ. 1494, 96–104 (2008)Google Scholar

Copyright information

© RILEM 2012

Authors and Affiliations

  • Christophe Gosselin
    • 1
  • Karen L. Scrivener
    • 1
  • Steven B. Feldman
    • 1
  • Wolfgang Schwarz
    • 2
  1. 1.Laboratory of Construction MaterialsSwiss Federal Technological Institute (EPFL)LausanneSwitzerland
  2. 2.Composite Anode SystemsViennaAustria

Personalised recommendations