Advertisement

DNA Repair Mechanisms in Other Cancer Stem Cell Models

  • Mihoko Kai
Chapter

Abstract

Stem cells are often referred to as the mother of all cells, meaning that they sit at the apex of a cellular hierarchy and, upon differentiation, give rise to all the mature cells of a tissue. DNA damage constantly arises from DNA replication, spontaneous chemical reactions and assaults by external or metabolism-derived agents. Therefore, all living cells must constantly contend with DNA damage. It is particularly crucial for survival of organisms how DNA damage is handled in stem cells, including tissue specific stem cells. While tissue-specific stem cells share the same purpose of maintaining organ functionality, recent studies have shown that the mechanisms of their response to DNA damage, the outcome of their DNA damage response, and the consequence of DNA repair for genomic stability vary greatly between tissues. Striking differences in the outcome of DNA damage response (DDR) have been seen in hematopoietic stem cells from different species and at different developmental stages. Furthermore cell cycle and metabolic states of stem cells seem to affect choices of DNA repair pathways and a choice between cell survival and death.

Keywords

Chronic Myeloid Leukemia Cancer Stem Cell Chronic Myeloid Leukemia Patient Chronic Myeloid Leukemia Cell Chk1 Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ailles LE, Weissman IL (2007) Cancer stem cells in solid tumors. Curr Opin Biotechnol 18(5):460–466PubMedGoogle Scholar
  2. 2.
    Hope KJ, Jin L, Dick JE (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5(7):738–743PubMedGoogle Scholar
  3. 3.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988; PMCID: 153034PubMedGoogle Scholar
  4. 4.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401PubMedGoogle Scholar
  5. 5.
    Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y et al (2004) Characterization of clonogenic multiple myeloma cells. Blood 103(6):2332–2336PubMedGoogle Scholar
  6. 6.
    Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104(3):973–8; PMCID: 1783424PubMedGoogle Scholar
  7. 7.
    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037PubMedGoogle Scholar
  8. 8.
    Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104(24):10158–10163; PMCID: 1891215PubMedGoogle Scholar
  9. 9.
    O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110PubMedGoogle Scholar
  10. 10.
    Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175(1):1–13PubMedGoogle Scholar
  11. 11.
    Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S et al (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65(20):9328–9337PubMedGoogle Scholar
  12. 12.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65(23):10946–10951PubMedGoogle Scholar
  13. 13.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828PubMedGoogle Scholar
  14. 14.
    Blanpain C, Mohrin M, Sotiropoulou PA, Passegue E (2011) DNA-damage response in tissue-specific and cancer stem cells. Cell Stem Cell 8(1):16–29PubMedGoogle Scholar
  15. 15.
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737PubMedGoogle Scholar
  16. 16.
    Passegue E, Weisman IL (2005) Leukemic stem cells: where do they come from? Stem Cell Rev 1(3):181–188PubMedGoogle Scholar
  17. 17.
    Passegue E (2005) Hematopoietic stem cells, leukemic stem cells and chronic myelogenous leukemia. Cell Cycle 4(2):266–268PubMedGoogle Scholar
  18. 18.
    Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351(7):657–667PubMedGoogle Scholar
  19. 19.
    Guzman ML, Jordan CT (2004) Considerations for targeting malignant stem cells in leukemia. Cancer Control 11(2):97–104PubMedGoogle Scholar
  20. 20.
    Guan Y, Gerhard B, Hogge DE (2003) Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood 101(8):3142–3149PubMedGoogle Scholar
  21. 21.
    Holyoake T, Jiang X, Eaves C, Eaves A (1999) Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 94(6):2056–2064PubMedGoogle Scholar
  22. 22.
    Guzman ML, Jordan CT (2009) Lessons learned from the study of JunB: new insights for normal and leukemia stem cell biology. Cancer Cell 15(4):252–254PubMedGoogle Scholar
  23. 23.
    Elrick LJ, Jorgensen HG, Mountford JC, Holyoake TL (2005) Punish the parent not the progeny. Blood 105(5):1862–1866PubMedGoogle Scholar
  24. 24.
    Wong S, Witte ON (2004) The BCR-ABL story: bench to bedside and back. Annu Rev Immunol 22:247–306PubMedGoogle Scholar
  25. 25.
    Peggs K, Mackinnon S (2003) Imatinib mesylate—the new gold standard for treatment of chronic myeloid leukemia. N Engl J Med 348(11):1048–1050PubMedGoogle Scholar
  26. 26.
    Calabretta B, Perrotti D (2004) The biology of CML blast crisis. Blood 103(11):4010–4022PubMedGoogle Scholar
  27. 27.
    Melo JV, Barnes DJ (2007) Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nature Rev Cancer 7(6):441–453Google Scholar
  28. 28.
    Yong AS, Melo JV (2009) The impact of gene profiling in chronic myeloid leukaemia. Best Pract Res Clin Haematol 22(2):181–190PubMedGoogle Scholar
  29. 29.
    Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B et al (2006) Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA 103(8):2794–2799; PMCID: 1413797PubMedGoogle Scholar
  30. 30.
    Oehler VG, Guthrie KA, Cummings CL, Sabo K, Wood BL, Gooley T et al (2009) The preferentially expressed antigen in melanoma (PRAME) inhibits myeloid differentiation in normal hematopoietic and leukemic progenitor cells. Blood 114(15):3299–3308; PMCID: 2759652PubMedGoogle Scholar
  31. 31.
    Perrotti D, Jamieson C, Goldman J, Skorski T (2010) Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest 120(7):2254–2264; PMCID: 2898591PubMedGoogle Scholar
  32. 32.
    Schultheis B, Szydlo R, Mahon FX, Apperley JF, Melo JV (2005) Analysis of total phosphotyrosine levels in CD34+ cells from CML patients to predict the response to imatinib mesylate treatment. Blood 105(12):4893–4894PubMedGoogle Scholar
  33. 33.
    Barnes DJ, Palaiologou D, Panousopoulou E, Schultheis B, Yong AS, Wong A et al (2005) Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia. Cancer Res 65(19):8912–8919PubMedGoogle Scholar
  34. 34.
    Perrotti D, Cesi V, Trotta R, Guerzoni C, Santilli G, Campbell K et al (2002) BCR-ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2. Nat Genet 30(1):48–58PubMedGoogle Scholar
  35. 35.
    Burke BA, Carroll M (2010) BCR-ABL: a multi-faceted promoter of DNA mutation in chronic myelogeneous leukemia. Leukemia 24(6):1105–1112PubMedGoogle Scholar
  36. 36.
    Cramer K, Nieborowska-Skorska M, Koptyra M, Slupianek A, Penserga ET, Eaves CJ et al (2008) BCR/ABL and other kinases from chronic myeloproliferative disorders stimulate single-strand annealing, an unfaithful DNA double-strand break repair. Cancer Res 68(17):6884–6888; PMCID: 2531069PubMedGoogle Scholar
  37. 37.
    Koptyra M, Falinski R, Nowicki MO, Stoklosa T, Majsterek I, Nieborowska-Skorska M et al (2006) BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood 108(1):319–327; PMCID: 1895841PubMedGoogle Scholar
  38. 38.
    Nowicki MO, Falinski R, Koptyra M, Slupianek A, Stoklosa T, Gloc E et al (2004) BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood 104(12):3746–3753PubMedGoogle Scholar
  39. 39.
    Bernstein C, Bernstein H, Payne CM, Garewal H (2002) DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 511(2):145–178PubMedGoogle Scholar
  40. 40.
    Bernstein R (1988) Cytogenetics of chronic myelogenous leukemia. Semin Hematol 25(1):20–34PubMedGoogle Scholar
  41. 41.
    Slupianek A, Nowicki MO, Koptyra M, Skorski T (2006) BCR/ABL modifies the kinetics and fidelity of DNA double-strand breaks repair in hematopoietic cells. DNA Repair 5(2):243–250; PMCID: 2856314PubMedGoogle Scholar
  42. 42.
    Slupianek A, Hoser G, Majsterek I, Bronisz A, Malecki M, Blasiak J et al (2002) Fusion tyrosine kinases induce drug resistance by stimulation of homology-dependent recombination repair, prolongation of G(2)/M phase, and protection from apoptosis. Mol Cell Biol 22(12):4189–4201; PMCID: 133854PubMedGoogle Scholar
  43. 43.
    Deutsch E, Jarrousse S, Buet D, Dugray A, Bonnet ML, Vozenin-Brotons MC et al (2003) Down-regulation of BRCA1 in BCR-ABL-expressing hematopoietic cells. Blood 101(11):4583–4588PubMedGoogle Scholar
  44. 44.
    Chen G, Yuan SS, Liu W, Xu Y, Trujillo K, Song B et al (1999) Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl. J Biol Chem 274(18):12748–12752PubMedGoogle Scholar
  45. 45.
    Pastwa E, Poplawski T, Czechowska A, Malinowski M, Blasiak J (2005) Non-homologous DNA end joining repair in normal and leukemic cells depends on the substrate ends. Z Naturforsch C 60(5–6):493–500PubMedGoogle Scholar
  46. 46.
    Deutsch E, Dugray A, AbdulKarim B, Marangoni E, Maggiorella L, Vaganay S et al (2001) BCR-ABL down-regulates the DNA repair protein DNA-PKcs. Blood 97(7):2084–2090PubMedGoogle Scholar
  47. 47.
    Skorski T (2002) BCR/ABL regulates response to DNA damage: the role in resistance to genotoxic treatment and in genomic instability. Oncogene 21(56):8591–8604PubMedGoogle Scholar
  48. 48.
    Shah NP, Sawyers CL (2003) Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene 22(47):7389–7395PubMedGoogle Scholar
  49. 49.
    Flamant S, Turhan AG (2005) Occurrence of de novo ABL kinase domain mutations in primary bone marrow cells after BCR-ABL gene transfer and Imatinib mesylate selection. Leukemia 19(7):1265–1267PubMedGoogle Scholar
  50. 50.
    von Bubnoff N, Barwisch S, Speicher MR, Peschel C, Duyster J (2005) A cell-based screening strategy that predicts mutations in oncogenic tyrosine kinases: implications for clinical resistance in targeted cancer treatment. Cell Cycle 4(3):400–406PubMedGoogle Scholar
  51. 51.
    Stoklosa T, Poplawski T, Koptyra M, Nieborowska-Skorska M, Basak G, Slupianek A et al (2008) BCR/ABL inhibits mismatch repair to protect from apoptosis and induce point mutations. Cancer Res 68(8):2576–2580PubMedGoogle Scholar
  52. 52.
    Wada C, Shionoya S, Fujino Y, Tokuhiro H, Akahoshi T, Uchida T et al (1994) Genomic instability of microsatellite repeats and its association with the evolution of chronic myelogenous leukemia. Blood 83(12):3449–3456PubMedGoogle Scholar
  53. 53.
    Maru Y, Kobayashi T, Tanaka K, Shibuya M (1999) BCR binds to the xeroderma pigmentosum group B protein. Biochem Biophys Res Commun 260(2):309–312PubMedGoogle Scholar
  54. 54.
    Takeda N, Shibuya M, Maru Y (1999) The BCR-ABL oncoprotein potentially interacts with the xeroderma pigmentosum group B protein. Proc Natl Acad Sci USA 96(1):203–255. PMCID: 15117PubMedGoogle Scholar
  55. 55.
    Nieborowska-Skorska M, Stoklosa T, Datta M, Czechowska A, Rink L, Slupianek A et al (2006) ATR-Chk1 axis protects BCR/ABL leukemia cells from the lethal effect of DNA double-strand breaks. Cell Cycle 5(9):994–1000PubMedGoogle Scholar
  56. 56.
    Maru Y, Bergmann E, Coin F, Egly JM, Shibuya M (2001) TFIIH functions are altered by the P210BCR-ABL oncoprotein produced on the Philadelphia chromosome. Mutation Research 483(1–2):83–88PubMedGoogle Scholar
  57. 57.
    Canitrot Y, Falinski R, Louat T, Laurent G, Cazaux C, Hoffmann JS et al (2003) p210 BCR/ABL kinase regulates nucleotide excision repair (NER) and resistance to UV radiation. Blood 102(7):2632–2637PubMedGoogle Scholar
  58. 58.
    Laurent E, Mitchell DL, Estrov Z, Lowery M, Tucker SL, Talpaz M et al (2003) Impact of p210(Bcr-Abl) on ultraviolet C wavelength-induced DNA damage and repair. Clin Cancer Res 9(10 Pt 1):3722–3730PubMedGoogle Scholar
  59. 59.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760PubMedGoogle Scholar
  60. 60.
    Rink L, Slupianek A, Stoklosa T, Nieborowska-Skorska M, Urbanska K, Seferynska I et al (2007) Enhanced phosphorylation of Nbs1, a member of DNA repair/checkpoint complex Mre11-RAD50-Nbs1, can be targeted to increase the efficacy of imatinib mesylate against BCR/ABL-positive leukemia cells. Blood 110(2):651–660; PMCID: 1924483PubMedGoogle Scholar
  61. 61.
    Bedi A, Barber JP, Bedi GC, el-Deiry WS, Sidransky D, Vala MS et al (1995) BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents. Blood 86(3):1148–1158PubMedGoogle Scholar
  62. 62.
    Nishii K, Kabarowski JH, Gibbons DL, Griffiths SD, Titley I, Wiedemann LM et al (1996) ts BCR-ABL kinase activation confers increased resistance to genotoxic damage via cell cycle block. Oncogene 13(10):2225–2234PubMedGoogle Scholar
  63. 63.
    Stiewe T, Parssanedjad K, Esche H, Opalka B, Putzer BM (2000). E1A overcomes the apoptosis block in BCR-ABL+ leukemia cells and renders cells susceptible to induction of apoptosis by chemotherapeutic agents. Cancer Res 60(14):3957–3964Google Scholar
  64. 64.
    Higginbottom K, Cummings M, Newland AC, Allen PD (2002) Etoposide-mediated deregulation of the G2M checkpoint in myeloid leukaemic cell lines results in loss of cell survival. Br J Haematol 119(4):956–964PubMedGoogle Scholar
  65. 65.
    Stoklosa T, Slupianek A, Datta M, Nieborowska-Skorska M, Nowicki MO, Koptyra M et al (2004) BCR/ABL recruits p53 tumor suppressor protein to induce drug resistance. Cell Cycle 3(11):1463–1472PubMedGoogle Scholar
  66. 66.
    Goldberg Z, Levav Y, Krichevsky S, Fibach E, Haupt Y (2004) Treatment of chronic myeloid leukemia cells with imatinib (STI571) impairs p53 accumulation in response to DNA damage. Cell Cycle 3(9):1188–1195PubMedGoogle Scholar
  67. 67.
    Dierov J, Dierova R, Carroll M (2004) BCR/ABL translocates to the nucleus and disrupts an ATR-dependent intra-S phase checkpoint. Cancer Cell 5(3):275–285PubMedGoogle Scholar
  68. 68.
    Chiou SH, Kao CL, Chen YW, Chien CS, Hung SC, Lo JF et al (2008) Identification of CD133-positive radioresistant cells in atypical teratoid/rhabdoid tumor. PLoS One 3(5):e2090; PMCID: 2396792PubMedGoogle Scholar
  69. 69.
    Sobel EL, Gilles FH, Leviton A, Tavare CJ, Hedley-Whyte ET, Rorke LB et al (1996) Survival of children with infratentorial neuroglial tumors. The Childhood Brain Tumor Consortium. Neurosurgery 39(1):45–54; discussion 54−6PubMedGoogle Scholar
  70. 70.
    Burger PC, Yu IT, Tihan T, Friedman HS, Strother DR, Kepner JL et al (1998) Atypical teratoid/rhabdoid tumor of the central nervous system: a highly malignant tumor of infancy and childhood frequently mistaken for medulloblastoma: a Pediatric Oncology Group study. Am J Surg Pathol 22(9):1083–1092PubMedGoogle Scholar
  71. 71.
    Tekautz TM, Fuller CE, Blaney S, Fouladi M, Broniscer A, Merchant TE et al (2005) Atypical teratoid/rhabdoid tumors (ATRT): improved survival in children 3 years of age and older with radiation therapy and high-dose alkylator-based chemotherapy. J Clin Oncol 23(7):1491–1499PubMedGoogle Scholar
  72. 72.
    Wong TT, Ho DM, Chang KP, Yen SH, Guo WY, Chang FC et al (2005) Primary pediatric brain tumors: statistics of Taipei VGH, Taiwan (1975–2004). Cancer 104(10):2156–2167PubMedGoogle Scholar
  73. 73.
    Parwani AV, Stelow EB, Pambuccian SE, Burger PC, Ali SZ (2005) Atypical teratoid/rhabdoid tumor of the brain: cytopathologic characteristics and differential diagnosis. Cancer 105(2):65–70PubMedGoogle Scholar
  74. 74.
    Cheng YC, Lirng JF, Chang FC, Guo WY, Teng MM, Chang CY et al (2005) Neuroradiological findings in atypical teratoid/rhabdoid tumor of the central nervous system. Acta Radiol 46(1):89–96PubMedGoogle Scholar
  75. 75.
    Bergmann M, Spaar HJ, Ebhard G, Masini T, Edel G, Gullotta F et al (1997) Primary malignant rhabdoid tumours of the central nervous system: an immunohistochemical and ultrastructural study. Acta Neurochir (Wien) 139(10):961–968; discussion 8–9Google Scholar
  76. 76.
    Ho DM, Hsu CY, Wong TT, Ting LT, Chiang H (2000) Atypical teratoid/rhabdoid tumor of the central nervous system: a comparative study with primitive neuroectodermal tumor/medulloblastoma. Acta Neuropathol 99(5):482–488PubMedGoogle Scholar
  77. 77.
    Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC (2008) PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Gene Dev 22(4):436–448; PMCID: 2238666PubMedGoogle Scholar
  78. 78.
    Viniegra JG, Martinez N, Modirassari P, Losa JH, Parada Cobo C, Lobo VJ et al (2005) Full activation of PKB/Akt in response to insulin or ionizing radiation is mediated through ATM. J Biol Chem 280(6):4029–4036PubMedGoogle Scholar
  79. 79.
    Caporali S, Levati L, Starace G, Ragone G, Bonmassar E, Alvino E et al (2008) AKT is activated in an ataxia-telangiectasia and Rad3-related-dependent manner in response to temozolomide and confers protection against drug-induced cell growth inhibition. Mol Pharmacol 74(1):173–183PubMedGoogle Scholar
  80. 80.
    Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY (2008) CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 27(12):1749–1758PubMedGoogle Scholar
  81. 81.
    Hirose Y, Katayama M, Mirzoeva OK, Berger MS, Pieper RO (2005) Akt activation suppresses Chk2-mediated, methylating agent-induced G2 arrest and protects from temozolomide-induced mitotic catastrophe and cellular senescence. Cancer Res 65(11):4861–4869PubMedGoogle Scholar
  82. 82.
    Mathews LA, Cabarcas SM, Hurt EM, Zhang X, Jaffee EM, Farrar WL (2011) Increased expression of DNA repair genes in invasive human pancreatic cancer cells. Pancreas 40(5):730–739; PMCID: 3116046PubMedGoogle Scholar
  83. 83.
    Yu J, Rhodes DR, Tomlins SA, Cao X, Chen G, Mehra R et al (2007) A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 67(22):10657–10663PubMedGoogle Scholar
  84. 84.
    Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K et al (2004) Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 101(3):811–816; PMCID: 321763PubMedGoogle Scholar
  85. 85.
    LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V et al (2002) Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res 62(15):4499–4506PubMedGoogle Scholar
  86. 86.
    Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA et al (2005) Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 8(5):393–406PubMedGoogle Scholar
  87. 87.
    Pyeon D, Newton MA, Lambert PF, den Boon JA, Sengupta S, Marsit CJ et al (2007) Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. Cancer Res 67(10):4605–4619; PMCID: 2858285PubMedGoogle Scholar
  88. 88.
    Schlingemann J, Habtemichael N, Ittrich C, Toedt G, Kramer H, Hambek M et al (2005) Patient-based cross-platform comparison of oligonucleotide microarray expression profiles. Lab Invest 85(8):1024–1039PubMedGoogle Scholar
  89. 89.
    Albino D, Scaruffi P, Moretti S, Coco S, Truini M, Di Cristofano C et al (2008) Identification of low intratumoral gene expression heterogeneity in neuroblastic tumors by genome-wide expression analysis and game theory. Cancer 113(6):1412–1422PubMedGoogle Scholar
  90. 90.
    Yusenko MV, Kuiper RP, Boethe T, Ljungberg B, van Kessel AG, Kovacs G (2009) High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer 9:152; PMCID: 2686725PubMedGoogle Scholar
  91. 91.
    Sanchez-Carbayo M, Socci ND, Lozano J, Saint F, Cordon-Cardo C (2006) Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J Clin Oncol 24(5):778–789PubMedGoogle Scholar
  92. 92.
    Klarmann GJ, Hurt EM, Mathews LA, Zhang X, Duhagon MA, Mistree T et al (2009) Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clin Exp Metastasis 26(5):433–446; PMCID: 2782741PubMedGoogle Scholar
  93. 93.
    Maacke H, Jost K, Opitz S, Miska S, Yuan Y, Hasselbach L et al (2000) DNA repair and recombination factor Rad51 is over-expressed in human pancreatic adenocarcinoma. Oncogene 19(23):2791–2795PubMedGoogle Scholar
  94. 94.
    Shammas MA, Shmookler Reis RJ, Koley H, Batchu RB, Li C, Munshi NC (2009) Dysfunctional homologous recombination mediates genomic instability and progression in myeloma. Blood 113(10):2290–2297; PMCID: 2652372PubMedGoogle Scholar
  95. 95.
    Pal J, Bertheau R, Buon L, Qazi A, Batchu RB, Bandyopadhyay S et al (2011) Genomic evolution in Barrett’s adenocarcinoma cells: critical roles of elevated hsRAD51, homologous recombination and Alu sequences in the genome. Oncogene 30(33):3585–3598PubMedGoogle Scholar
  96. 96.
    Hu G, Li F, Ouyang K, Xie F, Tang X, Wang K et al (2011) Intrinsic gemcitabine resistance in a novel pancreatic cancer cell line. Int J Oncol 40:798–806PubMedGoogle Scholar
  97. 97.
    Gallmeier E, Hermann PC, Mueller MT, Machado JG, Ziesch A, De Toni EN et al (2011) Inhibition of ataxia telangiectasia- and Rad3-related function abrogates the in vitro and in vivo tumorigenicity of human colon cancer cells through depletion of the CD133(+) tumor-initiating cell fraction. Stem Cells 29(3):418–429PubMedGoogle Scholar
  98. 98.
    Grompe M, D’Andrea A (2001) Fanconi anemia and DNA repair. Hum Mol Genet 10(20):2253–2259PubMedGoogle Scholar
  99. 99.
    Andreassen PR, D’Andrea AD, Taniguchi T (2004) ATR couples FANCD2 monoubiquitination to the DNA-damage response. Gene Dev 18(16):1958–1963; PMCID: 514175PubMedGoogle Scholar
  100. 100.
    Brown EJ, Baltimore D (2000) ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Gene Dev 14(4):397–402; PMCID: 316378PubMedGoogle Scholar
  101. 101.
    Ruzankina Y, Pinzon-Guzman C, Asare A, Ong T, Pontano L, Cotsarelis G et al (2007) Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1(1):113–126; PMCID: 2920603PubMedGoogle Scholar
  102. 102.
    Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I et al (2004) Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431(7011):997–1002PubMedGoogle Scholar
  103. 103.
    Bartucci M, Svensson S, Romania P, Dattilo R, Patrizii M, Signore M et al (2011) Therapeutic targeting of Chk1 in NSCLC stem cells during chemotherapy. Cell Death Differ 19:768–778PubMedGoogle Scholar
  104. 104.
    Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L et al (2009) Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci USA 106(38):16281–16286; PMCID: 2741477PubMedGoogle Scholar
  105. 105.
    Mihatsch J, Toulany M, Bareiss PM, Grimm S, Lengerke C, Kehlbach R et al (2011) Selection of radioresistant tumor cells and presence of ALDH1 activity in vitro. Radiother Oncol 99(3):300–306PubMedGoogle Scholar
  106. 106.
    Chen YC, Chen YW, Hsu HS, Tseng LM, Huang PI, Lu KH et al (2009) Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Bioph Res Co 385(3):307–313Google Scholar
  107. 107.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–67; PMCID: 2423808PubMedGoogle Scholar
  108. 108.
    Balicki D (2007) Moving Forward in Human Mammary Stem Cell Biology and Breast Cancer Prognostication Using ALDH1. Cell Stem Cell 1(5):485–487Google Scholar
  109. 109.
    Rasper M, Schafer A, Piontek G, Teufel J, Brockhoff G, Ringel F et al (2010) Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity. Neuro Oncol 12(10):1024–1033; PMCID: 3018920PubMedGoogle Scholar
  110. 110.
    Milyavsky M, Gan OI, Trottier M, Komosa M, Tabach O, Notta F et al (2010) A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Cell Stem Cell 7(2):186–197PubMedGoogle Scholar
  111. 111.
    Mohrin M, Bourke E, Alexander D, Warr MR, Barry-Holson K, Le Beau MM et al (2010) Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7(2):174–185; PMCID: 2924905PubMedGoogle Scholar
  112. 112.
    Blanpain C (2010) Stem cells: skin regeneration and repair. Nature 464(7289):686–687PubMedGoogle Scholar
  113. 113.
    Sotiropoulou PA, Candi A, Mascre G, De Clercq S, Youssef KK, Lapouge G et al (2010) Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nat cell Biol 12(6):572–582PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Radiation Oncology and Molecular Radiation Sciences, Department of OncologyThe Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine CRBIIBaltimoreUSA

Personalised recommendations