Skip to main content

DNA Repair Pathways and Mechanisms

  • Chapter
  • First Online:
Book cover DNA Repair of Cancer Stem Cells

Abstract

Our cells are constantly exposed to insults from endogenous and exogenous agents that can introduce damage into our DNA and generate genomic instability. Many of these lesions cause structural damage to DNA and can alter or eliminate fundamental cellular processes, such as DNA replication or transcription. DNA lesions commonly include base and sugar modifications, single- and double-strand breaks, DNA-protein cross-links, and base-free sites. To counteract the harmful effects of DNA damage, cells have developed a specialized DNA repair system, which can be subdivided into several distinct mechanisms based on the type of DNA lesion. These processes include base excision repair, mismatch repair, nucleotide excision repair, and double-strand break repair, which comprise both homologous recombination and non-homologous end-joining. Although a complex set of cellular responses are elicited following DNA damage, this chapter provides an introduction to the specific molecular mechanisms of recognition, removal, and repair of DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindahl T, Barnes DE (2000) Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol 65:127–133

    Article  PubMed  CAS  Google Scholar 

  2. Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361(15):1475–1485

    Article  PubMed  CAS  Google Scholar 

  3. Stracker TH, Usui T, Petrini JH (2009) Taking the time to make important decisions: the checkpoint effector kinases Chk1 and Chk2 and the DNA damage response. DNA Repair (Amst) 8(9):1047–1054

    Article  CAS  Google Scholar 

  4. Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408(6811):433–439

    Article  PubMed  CAS  Google Scholar 

  5. Rich T, Allen RL, Wyllie AH (2000) Defying death after DNA damage. Nature 407(6805):777–783

    Article  PubMed  CAS  Google Scholar 

  6. McKinnon PJ (2009) DNA repair deficiency and neurological disease. Nat Rev Neurosci 10(2):100–112

    Article  PubMed  CAS  Google Scholar 

  7. De Bont R, van Larebeke N (2004) Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19(3):169–185

    Article  PubMed  Google Scholar 

  8. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362(6422):709–715

    Article  PubMed  CAS  Google Scholar 

  9. Lindahl T, Nyberg B (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 11(19):3610–3618

    Article  PubMed  CAS  Google Scholar 

  10. Sugiyama H, Fujiwara T, Ura A et al (1994) Chemistry of thermal degradation of abasic sites in DNA. Mechanistic investigation on thermal DNA strand cleavage of alkylated DNA. Chem Res Toxicol 7(5):673–683

    CAS  Google Scholar 

  11. Yonekura S, Nakamura N, Yonei S, Zhang-Akiyama QM (2009) Generation, biological consequences and repair mechanisms of cytosine deamination in DNA. J Radiat Res (Tokyo) 50(1):19–26

    Article  CAS  Google Scholar 

  12. Frederico LA, Kunkel TA, Shaw BR (1990) A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry 29(10):2532–2537

    Article  PubMed  CAS  Google Scholar 

  13. Krokan HE, Drablos F, Slupphaug G (2002) Uracil in DNA–occurrence, consequences and repair. Oncogene 21(58):8935–8948

    Article  PubMed  CAS  Google Scholar 

  14. Kow YW (2002) Repair of deaminated bases in DNA. Free Radic Biol Med 33(7):886–893

    Article  PubMed  CAS  Google Scholar 

  15. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  16. Marnett LJ (2000) Oxyradicals and DNA damage. Carcinogenesis 21(3):361–370.

    Article  PubMed  CAS  Google Scholar 

  17. Cadet J, Berger M, Douki T, Ravanat JL (1997) Oxidative damage to DNA: formation, measurement, and biological significance. Rev Physiol Biochem Pharmacol 131:1–87

    PubMed  CAS  Google Scholar 

  18. Burney S, Caulfield JL, Niles JC, Wishnok JS, Tannenbaum SR (1999) The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat Res 424(1–2):37–49

    PubMed  CAS  Google Scholar 

  19. Ravanat J-L (2005) Measuring oxidized DNA lesions as biomarkers of oxidative stress: an analytical challenge FABAD. J Pharm Sci 30(2):100–113

    CAS  Google Scholar 

  20. Major GN, Collier JD (1998) Repair of DNA lesion O6-methylguanine in hepatocellular carcinogenesis. J Hepatobiliary Pancreat Surg 5(4):355–366

    Article  PubMed  CAS  Google Scholar 

  21. McCulloch SD, Kunkel TA (2008) The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 18(1):148–161

    Article  PubMed  CAS  Google Scholar 

  22. Shimizu M, Gruz P, Kamiya H et al (2003) Erroneous incorporation of oxidized DNA precursors by Y-family DNA polymerases. EMBO Rep 4(3):269–273

    Article  PubMed  CAS  Google Scholar 

  23. McClendon AK, Osheroff N (2007) DNA topoisomerase II, genotoxicity, and cancer. Mutat Res 623(1–2):83–97

    PubMed  CAS  Google Scholar 

  24. Pourquier P, Pommier Y (2001) Topoisomerase I-mediated DNA damage. Adv Cancer Res 80:189–216

    Article  PubMed  CAS  Google Scholar 

  25. Bridges BA (2005) Error-prone DNA repair and translesion synthesis: focus on the replication fork. DNA Repair (Amst) 4(5):618–619, 634

    Article  CAS  Google Scholar 

  26. Ravanat JL, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B 63(1–3):88–102

    Article  PubMed  CAS  Google Scholar 

  27. Ward JF (1988) DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol 35:95–125

    Article  PubMed  CAS  Google Scholar 

  28. Wogan GN, Hecht SS, Felton JS, Conney AH, Loeb LA (2004) Environmental and chemical carcinogenesis. Semin Cancer Biol 14(6):473–486

    Article  PubMed  CAS  Google Scholar 

  29. Irigaray P, Belpomme D (2010) Basic properties and molecular mechanisms of exogenous chemical carcinogens. Carcinogenesis 31(2):135–148

    Article  PubMed  CAS  Google Scholar 

  30. Noll DM, Mason TM, Miller PS (2006) Formation and repair of interstrand cross-links in DNA. Chem Rev 106(2):277–301

    Article  PubMed  CAS  Google Scholar 

  31. Sinha BK (1995) Topoisomerase inhibitors. A review of their therapeutic potential in cancer. Drugs 49(1):11–19

    CAS  Google Scholar 

  32. Bedard LL, Massey TE (2006) Aflatoxin B1-induced DNA damage and its repair. Cancer Lett 241(2):174–183

    Article  PubMed  CAS  Google Scholar 

  33. Altieri F, Grillo C, Maceroni M, Chichiarelli S (2008) DNA damage and repair: from molecular mechanisms to health implications. Antioxid Redox Signal 10(5):891–937

    Article  PubMed  CAS  Google Scholar 

  34. Zharkov DO (2008) Base excision DNA repair. Cell Mol Life Sci 65(10):1544–1565

    Article  PubMed  CAS  Google Scholar 

  35. Jacobs AL, Schar P (2012) DNA glycosylases: in DNA repair and beyond. Chromosoma 121(1):1–20

    Google Scholar 

  36. Hitomi K, Iwai S, Tainer JA (2007) The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair. DNA Repair (Amst) 6(4):410–428

    Article  CAS  Google Scholar 

  37. Abbotts R, Madhusudan S (2010) Human AP endonuclease 1 (APE1): from mechanistic insights to druggable target in cancer. Cancer Treat Rev 36(5):425–435

    Article  PubMed  CAS  Google Scholar 

  38. Interthal H, Chen HJ, Champoux JJ (2005) Human Tdp1 cleaves a broad spectrum of substrates, including phosphoamide linkages. J Biol Chem 280(43):36518–36528

    Article  PubMed  CAS  Google Scholar 

  39. Ahel I, Rass U, El-Khamisy SF et al (2006) The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature 443(7112):713–716

    Article  PubMed  CAS  Google Scholar 

  40. Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9(8):619–631

    PubMed  CAS  Google Scholar 

  41. Fortini P, Dogliotti E (2007) Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair (Amst) 6(4):398–409

    Article  CAS  Google Scholar 

  42. Caldecott KW (2003) XRCC1 and DNA strand break repair. DNA Repair (Amst) 2(9):955–969

    Article  CAS  Google Scholar 

  43. Marintchev A, Mullen MA, Maciejewski MW, Pan B, Gryk MR, Mullen GP (1999) Solution structure of the single-strand break repair protein XRCC1 N-terminal domain. Nat Struct Biol 6(9):884–893

    Article  PubMed  CAS  Google Scholar 

  44. Malanga M, Althaus FR (2005) The role of poly(ADP-ribose) in the DNA damage signaling network. Biochem Cell Biol 83(3):354–364

    Article  PubMed  CAS  Google Scholar 

  45. Peltomaki P (2001) Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum Mol Genet 10(7):735–740

    Article  PubMed  CAS  Google Scholar 

  46. Li GM (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18(1):85–98

    Article  PubMed  CAS  Google Scholar 

  47. Fukui K (2010) DNA mismatch repair in eukaryotes and bacteria. J Nucleic Acids 2010:1–6

    Google Scholar 

  48. Larrea AA, Lujan SA, Kunkel TA (2010) SnapShot: DNA mismatch repair. Cell 141(4):730 e1

    Google Scholar 

  49. Modrich P (2006) Mechanisms in eukaryotic mismatch repair. J Biol Chem 281(41):30305–30309

    Article  PubMed  CAS  Google Scholar 

  50. Galio L, Bouquet C, Brooks P (1999) ATP hydrolysis-dependent formation of a dynamic ternary nucleoprotein complex with MutS and MutL. Nucleic Acids Res 27(11):2325–2331

    Article  PubMed  CAS  Google Scholar 

  51. Tran PT, Erdeniz N, Symington LS, Liskay RM (2004) EXO1-A multi-tasking eukaryotic nuclease. DNA Repair (Amst) 3(12):1549–1559

    Article  CAS  Google Scholar 

  52. Kadyrov FA, Holmes SF, Arana ME et al (2007) Saccharomyces cerevisiae MutLalpha is a mismatch repair endonuclease. J Biol Chem 282(51):37181–37190

    Article  PubMed  CAS  Google Scholar 

  53. Shuck SC, Short EA, Turchi JJ (2008) Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res 18(1):64–72

    Article  PubMed  CAS  Google Scholar 

  54. Costa RM, Chigancas V, Galhardo Rda S, Carvalho H, Menck CF (2003) The eukaryotic nucleotide excision repair pathway. Biochimie 85(11):1083–1099

    Article  PubMed  CAS  Google Scholar 

  55. Nouspikel T (2008) Nucleotide excision repair and neurological diseases. DNA Repair (Amst) 7(7):1155–1167

    Article  CAS  Google Scholar 

  56. Cleaver JE, Lam ET, Revet I (2009) Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat Rev Genet 10(11):756–768

    Article  PubMed  CAS  Google Scholar 

  57. Vermeulen W, de Boer J, Citterio E et al (1997) Mammalian nucleotide excision repair and syndromes. Biochem Soc Trans 25(1):309–315

    PubMed  CAS  Google Scholar 

  58. Sugasawa K, Ng JM, Masutani C et al (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 2(2):223–232

    Article  PubMed  CAS  Google Scholar 

  59. Sugasawa K (2008) XPC: its product and biological roles. Adv Exp Med Biol 637:47–56

    Article  PubMed  CAS  Google Scholar 

  60. Sugasawa K (2010) Regulation of damage recognition in mammalian global genomic nucleotide excision repair. Mutat Res 685(1–2):29–37

    PubMed  CAS  Google Scholar 

  61. Fousteri M, Mullenders LH (2008) Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res 18(1):73–84

    Article  PubMed  CAS  Google Scholar 

  62. Hanawalt PC, Spivak G (2008) Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 9(12):958–970

    Article  PubMed  CAS  Google Scholar 

  63. van Gent DC, Hoeijmakers JH, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2(3):196–206

    Article  PubMed  CAS  Google Scholar 

  64. Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27(3):247–254

    Article  PubMed  CAS  Google Scholar 

  65. Li X, Heyer WD (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18(1):99–113

    Article  PubMed  CAS  Google Scholar 

  66. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    Article  PubMed  CAS  Google Scholar 

  67. Sartori AA, Lukas C, Coates J et al (2007) Human CtIP promotes DNA end resection. Nature 450(7169):509–514

    Article  PubMed  CAS  Google Scholar 

  68. Nimonkar AV, Ozsoy AZ, Genschel J, Modrich P, Kowalczykowski SC (2008) Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc Natl Acad Sci USA 105(44):16906–16911

    Article  PubMed  CAS  Google Scholar 

  69. Forget AL, Kowalczykowski SC (2010) Single-molecule imaging brings Rad51 nucleoprotein filaments into focus. Trends Cell Biol 20(5):269–276

    Article  PubMed  CAS  Google Scholar 

  70. McIlwraith MJ, Vaisman A, Liu Y, Fanning E, Woodgate R, West SC (2005) Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol Cell 20(5):783–792

    Article  PubMed  CAS  Google Scholar 

  71. Ip SC, Rass U, Blanco MG, Flynn HR, Skehel JM, West SC (2008) Identification of Holliday junction resolvases from humans and yeast. Nature 456(7220):357–361

    Article  PubMed  CAS  Google Scholar 

  72. Mimitou EP, Symington LS (2009) Nucleases and helicases take center stage in homologous recombination. Trends Biochem Sci 34(5):264–272

    Article  PubMed  CAS  Google Scholar 

  73. Seki M, Nakagawa T, Seki T et al (2006) Bloom helicase and DNA topoisomerase III alpha are involved in the dissolution of sister chromatids. Mol Cell Biol 26(16):6299–6307

    Article  PubMed  CAS  Google Scholar 

  74. Walker JR, Corpina RA, Goldberg J (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412(6847):607–614

    Article  PubMed  CAS  Google Scholar 

  75. Yoo S, Dynan WS (1999) Geometry of a complex formed by double strand break repair proteins at a single DNA end: recruitment of DNA-PKcs induces inward translocation of Ku protein. Nucleic Acids Res 27(24):4679–4686

    Article  PubMed  CAS  Google Scholar 

  76. DeFazio LG, Stansel RM, Griffith JD, Chu G (2002) Synapsis of DNA ends by DNA-dependent protein kinase. EMBO J 21(12):3192–3200

    Article  PubMed  CAS  Google Scholar 

  77. Lieber MR, Lu H, Gu J, Schwarz K (2008) Flexibility in the order of action and in the enzymology of the nuclease, polymerases, and ligase of vertebrate non-homologous DNA end joining: relevance to cancer, aging, and the immune system. Cell Res 18(1):125–133

    Article  PubMed  CAS  Google Scholar 

  78. Jeggo P, O’Neill P (2002) The Greek goddess, Artemis, reveals the secrets of her cleavage. DNA Repair (Amst) 1(9):771–777

    Article  CAS  Google Scholar 

  79. Chappell C, Hanakahi LA, Karimi-Busheri F, Weinfeld M, West SC (2002) Involvement of human polynucleotide kinase in double-strand break repair by non-homologous end joining. EMBO J 21(11):2827–2832

    Article  PubMed  CAS  Google Scholar 

  80. Perry JJ, Yannone SM, Holden LG et al (2006) WRN exonuclease structure and molecular mechanism imply an editing role in DNA end processing. Nat Struct Mol Biol 13(5):414–422

    Article  PubMed  CAS  Google Scholar 

  81. Bahmed K, Seth A, Nitiss KC, Nitiss JL (2011) End-processing during non-homologous end-joining: a role for exonuclease 1. Nucleic Acids Res 39(3):970–978

    Article  PubMed  CAS  Google Scholar 

  82. Ahnesorg P, Smith P, Jackson SP (2006) XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 124(2):301–313

    Article  PubMed  CAS  Google Scholar 

  83. Boland CR, Luciani MG, Gasche C, Goel A (2005) Infection, inflammation, and gastrointestinal cancer. Gut 54(9):1321–1331

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Dexheimer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dexheimer, T. (2013). DNA Repair Pathways and Mechanisms. In: Mathews, L., Cabarcas, S., Hurt, E. (eds) DNA Repair of Cancer Stem Cells. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4590-2_2

Download citation

Publish with us

Policies and ethics