Advertisement

DNA Repair Pathways and Mechanisms

  • Thomas S. Dexheimer
Chapter

Abstract

Our cells are constantly exposed to insults from endogenous and exogenous agents that can introduce damage into our DNA and generate genomic instability. Many of these lesions cause structural damage to DNA and can alter or eliminate fundamental cellular processes, such as DNA replication or transcription. DNA lesions commonly include base and sugar modifications, single- and double-strand breaks, DNA-protein cross-links, and base-free sites. To counteract the harmful effects of DNA damage, cells have developed a specialized DNA repair system, which can be subdivided into several distinct mechanisms based on the type of DNA lesion. These processes include base excision repair, mismatch repair, nucleotide excision repair, and double-strand break repair, which comprise both homologous recombination and non-homologous end-joining. Although a complex set of cellular responses are elicited following DNA damage, this chapter provides an introduction to the specific molecular mechanisms of recognition, removal, and repair of DNA damage.

Keywords

Lynch Syndrome Mismatch Repair Mismatch Repair Nucleotide Excision Repair Base Excision Repair Mismatch Repair Mismatch Repair Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lindahl T, Barnes DE (2000) Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol 65:127–133PubMedCrossRefGoogle Scholar
  2. 2.
    Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361(15):1475–1485PubMedCrossRefGoogle Scholar
  3. 3.
    Stracker TH, Usui T, Petrini JH (2009) Taking the time to make important decisions: the checkpoint effector kinases Chk1 and Chk2 and the DNA damage response. DNA Repair (Amst) 8(9):1047–1054CrossRefGoogle Scholar
  4. 4.
    Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408(6811):433–439PubMedCrossRefGoogle Scholar
  5. 5.
    Rich T, Allen RL, Wyllie AH (2000) Defying death after DNA damage. Nature 407(6805):777–783PubMedCrossRefGoogle Scholar
  6. 6.
    McKinnon PJ (2009) DNA repair deficiency and neurological disease. Nat Rev Neurosci 10(2):100–112PubMedCrossRefGoogle Scholar
  7. 7.
    De Bont R, van Larebeke N (2004) Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19(3):169–185PubMedCrossRefGoogle Scholar
  8. 8.
    Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362(6422):709–715PubMedCrossRefGoogle Scholar
  9. 9.
    Lindahl T, Nyberg B (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 11(19):3610–3618PubMedCrossRefGoogle Scholar
  10. 10.
    Sugiyama H, Fujiwara T, Ura A et al (1994) Chemistry of thermal degradation of abasic sites in DNA. Mechanistic investigation on thermal DNA strand cleavage of alkylated DNA. Chem Res Toxicol 7(5):673–683Google Scholar
  11. 11.
    Yonekura S, Nakamura N, Yonei S, Zhang-Akiyama QM (2009) Generation, biological consequences and repair mechanisms of cytosine deamination in DNA. J Radiat Res (Tokyo) 50(1):19–26CrossRefGoogle Scholar
  12. 12.
    Frederico LA, Kunkel TA, Shaw BR (1990) A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry 29(10):2532–2537PubMedCrossRefGoogle Scholar
  13. 13.
    Krokan HE, Drablos F, Slupphaug G (2002) Uracil in DNA–occurrence, consequences and repair. Oncogene 21(58):8935–8948PubMedCrossRefGoogle Scholar
  14. 14.
    Kow YW (2002) Repair of deaminated bases in DNA. Free Radic Biol Med 33(7):886–893PubMedCrossRefGoogle Scholar
  15. 15.
    Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefGoogle Scholar
  16. 16.
    Marnett LJ (2000) Oxyradicals and DNA damage. Carcinogenesis 21(3):361–370.PubMedCrossRefGoogle Scholar
  17. 17.
    Cadet J, Berger M, Douki T, Ravanat JL (1997) Oxidative damage to DNA: formation, measurement, and biological significance. Rev Physiol Biochem Pharmacol 131:1–87PubMedGoogle Scholar
  18. 18.
    Burney S, Caulfield JL, Niles JC, Wishnok JS, Tannenbaum SR (1999) The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat Res 424(1–2):37–49PubMedGoogle Scholar
  19. 19.
    Ravanat J-L (2005) Measuring oxidized DNA lesions as biomarkers of oxidative stress: an analytical challenge FABAD. J Pharm Sci 30(2):100–113Google Scholar
  20. 20.
    Major GN, Collier JD (1998) Repair of DNA lesion O6-methylguanine in hepatocellular carcinogenesis. J Hepatobiliary Pancreat Surg 5(4):355–366PubMedCrossRefGoogle Scholar
  21. 21.
    McCulloch SD, Kunkel TA (2008) The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 18(1):148–161PubMedCrossRefGoogle Scholar
  22. 22.
    Shimizu M, Gruz P, Kamiya H et al (2003) Erroneous incorporation of oxidized DNA precursors by Y-family DNA polymerases. EMBO Rep 4(3):269–273PubMedCrossRefGoogle Scholar
  23. 23.
    McClendon AK, Osheroff N (2007) DNA topoisomerase II, genotoxicity, and cancer. Mutat Res 623(1–2):83–97PubMedGoogle Scholar
  24. 24.
    Pourquier P, Pommier Y (2001) Topoisomerase I-mediated DNA damage. Adv Cancer Res 80:189–216PubMedCrossRefGoogle Scholar
  25. 25.
    Bridges BA (2005) Error-prone DNA repair and translesion synthesis: focus on the replication fork. DNA Repair (Amst) 4(5):618–619, 634CrossRefGoogle Scholar
  26. 26.
    Ravanat JL, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B 63(1–3):88–102PubMedCrossRefGoogle Scholar
  27. 27.
    Ward JF (1988) DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol 35:95–125PubMedCrossRefGoogle Scholar
  28. 28.
    Wogan GN, Hecht SS, Felton JS, Conney AH, Loeb LA (2004) Environmental and chemical carcinogenesis. Semin Cancer Biol 14(6):473–486PubMedCrossRefGoogle Scholar
  29. 29.
    Irigaray P, Belpomme D (2010) Basic properties and molecular mechanisms of exogenous chemical carcinogens. Carcinogenesis 31(2):135–148PubMedCrossRefGoogle Scholar
  30. 30.
    Noll DM, Mason TM, Miller PS (2006) Formation and repair of interstrand cross-links in DNA. Chem Rev 106(2):277–301PubMedCrossRefGoogle Scholar
  31. 31.
    Sinha BK (1995) Topoisomerase inhibitors. A review of their therapeutic potential in cancer. Drugs 49(1):11–19Google Scholar
  32. 32.
    Bedard LL, Massey TE (2006) Aflatoxin B1-induced DNA damage and its repair. Cancer Lett 241(2):174–183PubMedCrossRefGoogle Scholar
  33. 33.
    Altieri F, Grillo C, Maceroni M, Chichiarelli S (2008) DNA damage and repair: from molecular mechanisms to health implications. Antioxid Redox Signal 10(5):891–937PubMedCrossRefGoogle Scholar
  34. 34.
    Zharkov DO (2008) Base excision DNA repair. Cell Mol Life Sci 65(10):1544–1565PubMedCrossRefGoogle Scholar
  35. 35.
    Jacobs AL, Schar P (2012) DNA glycosylases: in DNA repair and beyond. Chromosoma 121(1):1–20Google Scholar
  36. 36.
    Hitomi K, Iwai S, Tainer JA (2007) The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair. DNA Repair (Amst) 6(4):410–428CrossRefGoogle Scholar
  37. 37.
    Abbotts R, Madhusudan S (2010) Human AP endonuclease 1 (APE1): from mechanistic insights to druggable target in cancer. Cancer Treat Rev 36(5):425–435PubMedCrossRefGoogle Scholar
  38. 38.
    Interthal H, Chen HJ, Champoux JJ (2005) Human Tdp1 cleaves a broad spectrum of substrates, including phosphoamide linkages. J Biol Chem 280(43):36518–36528PubMedCrossRefGoogle Scholar
  39. 39.
    Ahel I, Rass U, El-Khamisy SF et al (2006) The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature 443(7112):713–716PubMedCrossRefGoogle Scholar
  40. 40.
    Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9(8):619–631PubMedGoogle Scholar
  41. 41.
    Fortini P, Dogliotti E (2007) Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair (Amst) 6(4):398–409CrossRefGoogle Scholar
  42. 42.
    Caldecott KW (2003) XRCC1 and DNA strand break repair. DNA Repair (Amst) 2(9):955–969CrossRefGoogle Scholar
  43. 43.
    Marintchev A, Mullen MA, Maciejewski MW, Pan B, Gryk MR, Mullen GP (1999) Solution structure of the single-strand break repair protein XRCC1 N-terminal domain. Nat Struct Biol 6(9):884–893PubMedCrossRefGoogle Scholar
  44. 44.
    Malanga M, Althaus FR (2005) The role of poly(ADP-ribose) in the DNA damage signaling network. Biochem Cell Biol 83(3):354–364PubMedCrossRefGoogle Scholar
  45. 45.
    Peltomaki P (2001) Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum Mol Genet 10(7):735–740PubMedCrossRefGoogle Scholar
  46. 46.
    Li GM (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18(1):85–98PubMedCrossRefGoogle Scholar
  47. 47.
    Fukui K (2010) DNA mismatch repair in eukaryotes and bacteria. J Nucleic Acids 2010:1–6Google Scholar
  48. 48.
    Larrea AA, Lujan SA, Kunkel TA (2010) SnapShot: DNA mismatch repair. Cell 141(4):730 e1Google Scholar
  49. 49.
    Modrich P (2006) Mechanisms in eukaryotic mismatch repair. J Biol Chem 281(41):30305–30309PubMedCrossRefGoogle Scholar
  50. 50.
    Galio L, Bouquet C, Brooks P (1999) ATP hydrolysis-dependent formation of a dynamic ternary nucleoprotein complex with MutS and MutL. Nucleic Acids Res 27(11):2325–2331PubMedCrossRefGoogle Scholar
  51. 51.
    Tran PT, Erdeniz N, Symington LS, Liskay RM (2004) EXO1-A multi-tasking eukaryotic nuclease. DNA Repair (Amst) 3(12):1549–1559CrossRefGoogle Scholar
  52. 52.
    Kadyrov FA, Holmes SF, Arana ME et al (2007) Saccharomyces cerevisiae MutLalpha is a mismatch repair endonuclease. J Biol Chem 282(51):37181–37190PubMedCrossRefGoogle Scholar
  53. 53.
    Shuck SC, Short EA, Turchi JJ (2008) Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res 18(1):64–72PubMedCrossRefGoogle Scholar
  54. 54.
    Costa RM, Chigancas V, Galhardo Rda S, Carvalho H, Menck CF (2003) The eukaryotic nucleotide excision repair pathway. Biochimie 85(11):1083–1099PubMedCrossRefGoogle Scholar
  55. 55.
    Nouspikel T (2008) Nucleotide excision repair and neurological diseases. DNA Repair (Amst) 7(7):1155–1167CrossRefGoogle Scholar
  56. 56.
    Cleaver JE, Lam ET, Revet I (2009) Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat Rev Genet 10(11):756–768PubMedCrossRefGoogle Scholar
  57. 57.
    Vermeulen W, de Boer J, Citterio E et al (1997) Mammalian nucleotide excision repair and syndromes. Biochem Soc Trans 25(1):309–315PubMedGoogle Scholar
  58. 58.
    Sugasawa K, Ng JM, Masutani C et al (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 2(2):223–232PubMedCrossRefGoogle Scholar
  59. 59.
    Sugasawa K (2008) XPC: its product and biological roles. Adv Exp Med Biol 637:47–56PubMedCrossRefGoogle Scholar
  60. 60.
    Sugasawa K (2010) Regulation of damage recognition in mammalian global genomic nucleotide excision repair. Mutat Res 685(1–2):29–37PubMedGoogle Scholar
  61. 61.
    Fousteri M, Mullenders LH (2008) Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res 18(1):73–84PubMedCrossRefGoogle Scholar
  62. 62.
    Hanawalt PC, Spivak G (2008) Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 9(12):958–970PubMedCrossRefGoogle Scholar
  63. 63.
    van Gent DC, Hoeijmakers JH, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2(3):196–206PubMedCrossRefGoogle Scholar
  64. 64.
    Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27(3):247–254PubMedCrossRefGoogle Scholar
  65. 65.
    Li X, Heyer WD (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18(1):99–113PubMedCrossRefGoogle Scholar
  66. 66.
    Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211PubMedCrossRefGoogle Scholar
  67. 67.
    Sartori AA, Lukas C, Coates J et al (2007) Human CtIP promotes DNA end resection. Nature 450(7169):509–514PubMedCrossRefGoogle Scholar
  68. 68.
    Nimonkar AV, Ozsoy AZ, Genschel J, Modrich P, Kowalczykowski SC (2008) Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc Natl Acad Sci USA 105(44):16906–16911PubMedCrossRefGoogle Scholar
  69. 69.
    Forget AL, Kowalczykowski SC (2010) Single-molecule imaging brings Rad51 nucleoprotein filaments into focus. Trends Cell Biol 20(5):269–276PubMedCrossRefGoogle Scholar
  70. 70.
    McIlwraith MJ, Vaisman A, Liu Y, Fanning E, Woodgate R, West SC (2005) Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol Cell 20(5):783–792PubMedCrossRefGoogle Scholar
  71. 71.
    Ip SC, Rass U, Blanco MG, Flynn HR, Skehel JM, West SC (2008) Identification of Holliday junction resolvases from humans and yeast. Nature 456(7220):357–361PubMedCrossRefGoogle Scholar
  72. 72.
    Mimitou EP, Symington LS (2009) Nucleases and helicases take center stage in homologous recombination. Trends Biochem Sci 34(5):264–272PubMedCrossRefGoogle Scholar
  73. 73.
    Seki M, Nakagawa T, Seki T et al (2006) Bloom helicase and DNA topoisomerase III alpha are involved in the dissolution of sister chromatids. Mol Cell Biol 26(16):6299–6307PubMedCrossRefGoogle Scholar
  74. 74.
    Walker JR, Corpina RA, Goldberg J (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412(6847):607–614PubMedCrossRefGoogle Scholar
  75. 75.
    Yoo S, Dynan WS (1999) Geometry of a complex formed by double strand break repair proteins at a single DNA end: recruitment of DNA-PKcs induces inward translocation of Ku protein. Nucleic Acids Res 27(24):4679–4686PubMedCrossRefGoogle Scholar
  76. 76.
    DeFazio LG, Stansel RM, Griffith JD, Chu G (2002) Synapsis of DNA ends by DNA-dependent protein kinase. EMBO J 21(12):3192–3200PubMedCrossRefGoogle Scholar
  77. 77.
    Lieber MR, Lu H, Gu J, Schwarz K (2008) Flexibility in the order of action and in the enzymology of the nuclease, polymerases, and ligase of vertebrate non-homologous DNA end joining: relevance to cancer, aging, and the immune system. Cell Res 18(1):125–133PubMedCrossRefGoogle Scholar
  78. 78.
    Jeggo P, O’Neill P (2002) The Greek goddess, Artemis, reveals the secrets of her cleavage. DNA Repair (Amst) 1(9):771–777CrossRefGoogle Scholar
  79. 79.
    Chappell C, Hanakahi LA, Karimi-Busheri F, Weinfeld M, West SC (2002) Involvement of human polynucleotide kinase in double-strand break repair by non-homologous end joining. EMBO J 21(11):2827–2832PubMedCrossRefGoogle Scholar
  80. 80.
    Perry JJ, Yannone SM, Holden LG et al (2006) WRN exonuclease structure and molecular mechanism imply an editing role in DNA end processing. Nat Struct Mol Biol 13(5):414–422PubMedCrossRefGoogle Scholar
  81. 81.
    Bahmed K, Seth A, Nitiss KC, Nitiss JL (2011) End-processing during non-homologous end-joining: a role for exonuclease 1. Nucleic Acids Res 39(3):970–978PubMedCrossRefGoogle Scholar
  82. 82.
    Ahnesorg P, Smith P, Jackson SP (2006) XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 124(2):301–313PubMedCrossRefGoogle Scholar
  83. 83.
    Boland CR, Luciani MG, Gasche C, Goel A (2005) Infection, inflammation, and gastrointestinal cancer. Gut 54(9):1321–1331PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.NIH Chemical Genomics Center, National Center for Advancing Translational SciencesNIHBethesdaUSA

Personalised recommendations