Understanding the Value of VGI

  • Rob FeickEmail author
  • Stéphane Roche


Growing investments of time, money and other resources in the production of geographic information (GI) in concert with the increasingly widespread use of GI throughout society are often accompanied by statements that reference the economic, cultural and social value of GI. Despite considerable effort over the past decade, our capacity to quantify the value of GI or even understand how value should be conceptualized remains limited. The recent emergence of volunteered geographic information (VGI) has introduced several new facets to the challenge of understanding the value of (V)GI. This chapter examines how VGI use and production are challenging our understanding of how GI and VGI alike are valued. Following a review of the traditional approaches to valuing GI, the chapter explores the distinctive characteristics of VGI use and production that introduce new dimensions to value. More specifically, the chapter proposes several metaphors (serendipitous and unexpected discovery, Debord’s ‘Dérives’ metaphor, Lego block theory) that can be used to conceptualize VGI value and the potential to adapt the ‘fitness-for-use’ concept to guide user assessments of VGI value in practice.


Geographic Information Spatial Data Spatial Data Infrastructure Geographic Information Service Geotagged Photo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. ACIL Tasman (2008). The value of spatial information: The impact of modern spatial information technologies on the Australian economy. Report prepared for the CRC for Spatial Information and ANZLIC, the Spatial Information Council, Australia. Accessed January 2, 2012.
  2. Bourcier, D., & Van Andel, P. (Eds.). (2008). La Sérendipité: Le hasard heureux. Paris: Hermann.Google Scholar
  3. Bruns, A. (2008). Blogs, Wikipedia, second life, and beyond. From production to produsage. New York: Peter Lang.Google Scholar
  4. Budhathoki, N. R., Bruce, B., & Nedovic-Budic, Z. (2008). Reconceptualizing the role of the user of spatial data infrastructure. GeoJournal, 72, 149–160.CrossRefGoogle Scholar
  5. Burrough, P. A., & McDonnell, R. A. (1998). Principles of geographic information systems (2nd ed.). New York: Oxford University Press.Google Scholar
  6. Chrisman, N.R. (1983). The role of quality information in the long term functioning of a Geograph­ical Information System. Proceedings of the International Symposium on Automated Cartography (Auto Carto 6), Ottawa, Canada, pp. 303–321.Google Scholar
  7. Coleman, D. J., Georgiadou, Y., & Labonté, J. (2009). Volunteered geographic information: The nature and motivation of produsers. International Journal of Spatial Data Infrastructure Research, 4, 332–358.Google Scholar
  8. Craglia, M., & Nowak, J. (2006). Report of international workshop on spatial data infrastructures: Cost-benefit/return on investment: Assessing the impacts of spatial data infrastructures, European Commission, Directorate General Joint Research Centre (Technical report). Ispra: Institute for Environment and Sustainability.Google Scholar
  9. Crompvoets, J., de Man, E., & Macharis, C. (2010). Value of spatial data: Networked performance beyond economic rhetoric. International Journal of Spatial Data Infrastructures Research, 5, 96–119.Google Scholar
  10. Debord, G. E. (1958). Théorie de la dérive, Internationnale situationniste, n.2, décembre. Accessed January 2, 2012.
  11. Devillers, R., & Jeansoulin, R. (Eds.). (2006). Fundamentals of spatial data quality. London: ISTE.Google Scholar
  12. Didier, M. (1990). Utilité et valeur de l’information géographique. Paris: Presses Universitaires de France.Google Scholar
  13. Dobson, J. E., & Fisher, P. F. (2003 Spring). Geoslavery. IEEE Technology and Society Magazine, 47–52.Google Scholar
  14. Edelson, D. C. (2011). “GeoLearning”: Tricorders – The next tool for geographic learning? ArcNews, Winter 2010/2011. Accessed January 2, 2012.
  15. Elwood, S. (2010). Geographic information science: Emerging research on the societal implications of the geospatial web. Progress in Human Geography, 34(3), 349–357.CrossRefGoogle Scholar
  16. Elwood, S., & Leszczynski, A. (2011). Privacy reconsidered: New representations, data practices, and the geoweb. Geoforum, 42(1), 6–15.CrossRefGoogle Scholar
  17. Flanagin, A. J., & Metzger, M. J. (2008). The credibility of volunteered geographic information. GeoJournal, 72, 137–148.CrossRefGoogle Scholar
  18. Garcia Almirall, P., Bergadà, M. M., & Queraltó Ros, P. (2008). The socio- economic impact of the spatial data infrastructure of Catalonia, European Commission, EUR 23300 EN. Accessed January 2, 2012.Google Scholar
  19. Genovese, E., Cotteret, G., Roche, S., Caron, C., & Feick, R. (2009a). Evaluating the socio-economic impact of geographic information: A classification of the literature. International Journal of Spatial Data Infrastructure Research, 4, 218–238.Google Scholar
  20. Genovese, E., Roche, S., & Caron, C. (2009b). The value chain approach to evaluate the economic impact of geographic information: Towards a new visual tool. In B. van Loenen, J. W. J. Besemer, & J. A. Zevenberger (Eds.), SDI convergence: Research, emerging trends, and critical assessment (pp. 175–187). Accessed January 2, 2012.
  21. Genovese, E., Roche, S., Caron, C., & Feick, R. (2010). The ecoGeo cookbook for the assessment of geographic information value. International Journal of Spatial Data Infrastructure Research, 5, 120–144.Google Scholar
  22. GITA (2007). Building a business case for shared geospatial data and services: A practitioners guide to financial and strategic analysis for a multi-participant program. Accessed January 2, 2012.
  23. Goodchild, M. F. (2007). Citizens as voluntary sensors: Spatial data infrastructure in the world of Web 2.0. International Journal of Spatial Data Infrastructures Research, 2, 24–32.Google Scholar
  24. Goodchild, M. F. (2008). Commentary: Whither VGI? GeoJournal, 72, 239–244.CrossRefGoogle Scholar
  25. Goodchild, M. F., & Glennon, J. A. (2010). Crowdsourcing geographic information for disaster response: A research frontier. International Journal of Digital Earth, 3(3), 231–241.CrossRefGoogle Scholar
  26. Graham, M., & Zook, M. (2011). Visualizing global cyberscapes: Mapping user-generated placemarks. Journal of Urban Technology, 18(1), 115–132.CrossRefGoogle Scholar
  27. Grira, J., Bédard, Y., & Roche, S. (2010). Spatial data uncertainty in the VGI world: Going from consumer to producer. Geomatica, 64(1), 61–71.Google Scholar
  28. Haklay, M. (2010). How good is volunteered geographic information? A comparative study of OpenStreetMap and ordnance survey datasets. Environment and Planning B, 37, 682–703.CrossRefGoogle Scholar
  29. Haklay, M., Singleton, A., & Parker, C. (2008). Web mapping 2.0: The neogeography of the GeoWeb. Geography Compass, 2(6), 2011–2039.CrossRefGoogle Scholar
  30. Hall, B., Chipeniuk, R., Feick, R., Leahy, M., & Deparday, V. (2010). Community-based production of geographic information using open source software and Web 2.0. International Journal of Geographic Information Science, 24(5), 761–781.CrossRefGoogle Scholar
  31. Halsing, D., Theissen, K., & Bernknopf, R. (2004). A cost-benefit analysis of the National Map. Circular 1271, U.S. Department of the Interior, U.S. Geological Survey, Reston, Virginia. Accessed January 2, 2012.
  32. Krek, A. (2006). Geographic information as an economic good. In M. Campagna (Ed.), GIS for sustainable development. Boca Raton: Taylor and Francis.Google Scholar
  33. Krek, A., & Frank, A. U. (2000). The production of geographic information – The value tree. Geo-Informations-SystemeJournal for Spatial Information and Decision Making 13(3), 10–12. Accessed January 2, 2012.
  34. Longhorn, R., & Blakemore, M. (2008). Geographic information: Value, pricing, production and consumption. Boca Raton: CRC Press.Google Scholar
  35. Lussault, M. (2007). L’homme spatial: la construction sociale de l’espace humain. Paris: Seuil.Google Scholar
  36. Musgrave, R. A. (1939). The voluntary exchange theory of public economy. Quarterly Journal of Economics, 53(2), 213–237.CrossRefGoogle Scholar
  37. Natural Resources Canada (2006). Résultats du recensement 2004 de l’industrie géomatique (Technical report). Sherbrooke: Natural Resources Canada.Google Scholar
  38. Obermeyer, N. (2006). Measuring the benefits and costs of GIS. In P. Longely, M. Goodchild, D. Maguire, & D. Rhind (Eds.), Geographical information systems: Principles, techniques, management and applications (2nd ed., pp. 601–610). Hoboken: Wiley.Google Scholar
  39. Obermeyer, N. (2008). Thoughts on “Volunteered (Geo)Slavery”. Accessed January 2, 2012.
  40. OpenStreetMap (2011). OpenStreetMap Changesets. Accessed January 2, 2012.
  41. Perkins, C., & Dodge, M. (2009). Satellite imagery and the spectacle of secret spaces. Geoforum, 40, 546–560.CrossRefGoogle Scholar
  42. Pickles, J. (1995). Ground truth: The social implications of geographic information systems. New York: The Guilford Press.Google Scholar
  43. Plan géomatique du gouvernement du Québec (PGGQ). (2004). Profil financier de la géomatique des ministères et des organismes (Technical report). Ministère des Ressources naturelles et de la Faunes, Québec, 23.Google Scholar
  44. Rana, S., & Joliveau, T. (2009). NeoGeography: An extension of mainstream geography for everyone made by everyone? Journal of Location Based Services, 3(2), 75–81.CrossRefGoogle Scholar
  45. Raymond, E. S. (1999). The cathedral and the bazaar: Musings on Linux and open source by an accidental revolutionary. Cambridge, MA: O’Reilly.Google Scholar
  46. Richardson, L., & Loomis, J. (2009). The total economic value of threatened, endangered and rare species: An updated meta-analysis. Ecological Economics, 68, 1535–1548.CrossRefGoogle Scholar
  47. Roche, S. (2011). De la cartographie participative aux WikiSIG. In O. Walser, L. Thévoz, F. Joerin, M. Schuler, S. Joost, B. Debarbieux, & H. Dao (Eds.), Les SIG au service du développement territorial (pp. 117–129). Lausanne: Presses polytechniques et universitaires romandes.Google Scholar
  48. Roche, S., & Raveleau, B. (2009). Social use and adoption models of GIS. In S. Roche & C. Caron (Eds.), Organizational facets of GIS (pp. 115–144). London: ISTE Ltd/John Wiley.Google Scholar
  49. Roche, S., Sureau, K., & Caron, C. (2003). How to improve the social-utility value of geographic information technologies for the French local governments? A Delphi study. Environment and Planning B: Planning and Design, 30(3), 429–447.CrossRefGoogle Scholar
  50. Roche, S., Propeck-Zimmerman, E., & Mericskay, B. (2011). GeoWeb and risk management: Issues and perspectives of volunteered geographic information. GeoJournal. doi: 10.1007/s10708-011-9423-9.
  51. Rodriguez, P. O. (2005). Cadre théorique pour l’évaluation des infrastructures d’information geospatial. PhD thesis, Département des Sciences Géomatiques, Faculté de Foresterie et de Géomatique, Laval University, Québec.Google Scholar
  52. Sui, D. (2008). The wikification of GIS and its consequences: Or Angelina Jolie’s new tattoo and the future of GIS. Computers, Environment and Urban Systems, 32, 1–5.CrossRefGoogle Scholar
  53. Tiebout, C. M. (1956). A pure theory of local expenditures. Journal of Political Economy, 64(5), 416–424.CrossRefGoogle Scholar
  54. Williamson, I., Rajabifard, A., & Holland, P. (2010). Spatially enabled society. Proceedings of the FIG Congress 2010, “Facing the Challenges – Building the Capacity”, Sydney. Accessed January 2, 2012.
  55. Yahoo! (2011). Austrian student takes on Facebook. Accessed December 7, 2011.

Copyright information

© Springer Science+Business Media Dordrecht. 2013

Authors and Affiliations

  1. 1.School of PlanningUniversity of WaterlooWaterlooCanada
  2. 2.Département des sciences géomatiquesUniversité LavalQuébecCanada

Personalised recommendations