Electron Microscopy in Angiogenesis Research

  • Ruth M. Hirschberg
  • Johanna Plendl


Electron microscopy is a powerful tool for detection and supervision of all key cell differentiation processes of in vivo neovascularisation that are also considered important in realistic in vitro models of angiogenesis, vasculogenesis and vascular remodelling. It allows detection and supervision of all major vascular differentiation processes for both, in vivo and in vitro models of neovascularisation, but preparation of samples requires experience and particular diligence in order to preserve the damageable spatial structures. The wealth of available information provided by scanning and transmission electron microscopy approaches may be useful for subsequent, e.g., biochemical or molecular, studies and thus delivers important controls for further experimental designs. In order to preserve the fragile three-dimensional cellular structures for EM, particularly of in vitro models, modified processing techniques for both TEM and SEM need to be applied that are emphasised in this chapter. E.g., different pre-embedding and sample taking techniques are provided and illustrated with hands-on photographs from the electron microscopy laboratory. Scanning electron microscopy of vascular microcorrosion casts – particularly important for studying intussusceptive processes and assessing tumour neovascularisation – is also described.


Osmium Tetroxide Culture Vessel Scan Electron Microscopy Examination Casting Medium Colloidal Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors particularly wish to thank our experienced EM laboratory staff Monika Sachtleben and Verena Holle (née Eckert-Funke), for their ever-lasting enthusiasm and expert support. Many of our findings and experiences from processing cell culture models of angiogenesis for EM were previously published in the article “Electron microscopy of cultured angiogenic endothelial cells” [14] and are used with permission. The presented agar-pre-embedding technique allowing optimal sample retrieval for processing three-dimensional in vitro-angiogenesis models, in particular, is primarily the result of Monika Sachtleben’s “penchant for perfectionism” within her EM laboratory.

Our graphic designer team also supported this chapter: Martin Werner assisted us with the hands-on photos from the EM laboratory, and Diemut Starke supplied the excellent schematic drawing illustrating the trouble-shooting process in sputter-coating for SEM.

Our colleagues and former doctorate students Dr. Mahtab Bahramsoltani (Institute of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Leipzig), Dr. Sabine Kaessmeyer (Institute of Veterinary Anatomy, Faculty of Veterinary Medicine, Freie Universität Berlin), Dr. Jasmin Lienau (Centre for Musculoskeletal Surgery, Charité, Berlin), Dr. Pawel Janczyk (Federal Institute for Risk Assessment, Unit Molecular Diagnostics and Genetics, Department of Biological Safety, Berlin) and Dr. Sophie Backhaus (née Hansen) generously supported this chapter with brilliant EM micrographs.


  1. 1.
    Bahramsoltani M, Plendl J (2004) Ein neues in vitro-Modell zur Quantifizierung der Angiogenese in vitro. (A new in vitro model to quantify angiogenesis). ALTEX 21:227–244PubMedGoogle Scholar
  2. 2.
    Bartczak D, Sanchez-Elsner T, Louafi F, Millar TM, Kanara AG (2011) Receptor-mediated interactions between colloidal gold nanoparticles and human umbilical vein endothelial cells. Small 7:388–394PubMedCrossRefGoogle Scholar
  3. 3.
    Belton CM (1979) Application of ruthenium red ligand binding of osmium: scanning electron microscopy of larval tapeworms. Micron 10:1–4Google Scholar
  4. 4.
    Belz GT, Auchterlonie GJ (1995) An Investigation of the use of chromium, platinum and gold coating for scanning electron microscopy of casts of lymphoid tissues. Micron 26:141–144PubMedCrossRefGoogle Scholar
  5. 5.
    Braet F, De Zanger R, Wisse E (1997) Drying Cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells. J Microsc 186:84–87PubMedCrossRefGoogle Scholar
  6. 6.
    Christofferson RH, Nilsson BO (1988) Microvascular corrosion casting with analysis in the scanning electron microscope. Scanning 19:43–63Google Scholar
  7. 7.
    Dvorak AM, Wiberg L, Monahan-Earley RA, Galli SJ (1990) A simple technique to facilitate the ultrastructural analysis of cells in soft agar culture systems: demonstration of the development in vitro of morphologically mature mast cells and phagocytic macrophages from the bone marrow cells of genetically mast cell-deficient W/Wv or congenic normal mice. Lab Invest 62:774–781PubMedGoogle Scholar
  8. 8.
    Hamill RJ, Vann JM, Proctor RA (1986) Phagocytosis of Stapylococcus aureus by cultured bovine aortic endothelial cells: model for postadherence events in endovascular infections. Infect Immun 54:833–836PubMedGoogle Scholar
  9. 9.
    Hansen S (2009) Aufnahme und Verteilung von Liposomen und Liposom-Konjugaten in Endothelzellen in vitro. (Uptake and distribution of liposomes and liposome-conjugates in endothelial cells in vitro). Dissertation thesis, Institute of Veterinary Anatomy, Faculty of Veterinary Medicine, Freie Universität, BerlinGoogle Scholar
  10. 10.
    Heinzer S, Kuhn G, Krucker T, Meyer E, Ulmann-Schuler A, Stampanoni M, Gassmann M, Marti HH, Müller R, Volgel J (2008) Novel three-dimensional analysis tool for vascular trees indicates complete micro-networks, not single capillaries, as the angiogenic endpoint in mice overexpressing human VEGF(165) in the brain. Neuroimage 39:1549–1558PubMedCrossRefGoogle Scholar
  11. 11.
    Hirschberg RM (1999) Die Feinstruktur der Blutgefäße an der gesunden und erkrankten Rinderklaue (The microvasculature of the healthy and diseases bovine claw). Dissertation, Institute of Veterinary Anatomy, Faculty of Veterinary Medicine, Freie Universität, BerlinGoogle Scholar
  12. 12.
    Hirschberg RM, Muelling CKW, Bragulla H (1999) Microvasculature of the bovine claw demonstrated by improved micro-corrosion-casting technique. Microsc Res Tech 45:184–197PubMedCrossRefGoogle Scholar
  13. 13.
    Hirschberg RM, Plendl J (2005) Pododermal angiogenesis and angioadaptation in the bovine claw. Microsc Res Tech 66:145–155PubMedCrossRefGoogle Scholar
  14. 14.
    Hirschberg RM, Sachtleben M, Plendl J (2005) Electron microscopy of cultured angiogenic endothelial cells. Microsc Res Tech 67:248–259PubMedCrossRefGoogle Scholar
  15. 15.
    Janzcyk P, Hansen S, Bahramsoltani M, Plendl J (2010) The glycocalyx of human, bovine and murine microvascular endothelial cells cultured in vitro. J Electron Microsc 59:291–298CrossRefGoogle Scholar
  16. 16.
    Kelley RO, Dekker RA, Bluemink JG (1973) Ligand-mediated osmium binding: its application in coating biological specimens for scanning electron microscopy. J Ultrastruct Res 45:254–258PubMedCrossRefGoogle Scholar
  17. 17.
    Konerding MA, Miodonski AJ, Lametschwandtner A (1995) Microvascular corrosion casting in the study of tumor vascularity: a review. Scanning Microsc 9:1233–1243PubMedGoogle Scholar
  18. 18.
    Konerding MA, Turhan A, Ravnic DJ, Lin M, Fuchs C, Secomb TW, Tsuda A, Mentzer SJ (2010) Inflammation-induced intussusceptive angiogenesis in murine colitis. Anat Rec 293:849–857CrossRefGoogle Scholar
  19. 19.
    Krucker T, Lang A, Meyer EP (2006) New polyurethane-based material for vascular corrosion casting with improved physical and imaging characteristics. Microsc Res Tech 69:138–147PubMedCrossRefGoogle Scholar
  20. 20.
    Lametschwandtner A, Lametschwandtner U, Weiger T (1984) Scanning electron microscopy of vascular corrosion casts – technique and applications. Scanning Electron Microsc (Pt2):663–695Google Scholar
  21. 21.
    Lametschwandtner A, Lametschwandtner U, Weiger T (1990) Scanning electron microscopy of vascular corrosion casts – technique and applications updated review. Scanning Microsc 4:889–941PubMedGoogle Scholar
  22. 22.
    Lee GS, Filipovic N, Lin M, Gibney BC, Simpson DC, Konerding MA, Tsuda A, Mentzer SJ (2011) Intravascular pillars and pruning in the extraembryonic vessels of chick embryos. Dev Dyn 240:1335–1343PubMedCrossRefGoogle Scholar
  23. 23.
    Lienau J, Kaletta C, Teifel M, Naujoks K, Bhoola K, Plendl J (2005) Morphology and transfection study of human microvascular endothelial cell angiogenesis: an in vitro three-dimensional model. Biol Chem 386:167–175PubMedCrossRefGoogle Scholar
  24. 24.
    Makanya AN, Hlushchuk R, Djonov VG (2009) Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning and remodelling. Angiogenesis 12:113–123PubMedCrossRefGoogle Scholar
  25. 25.
    Mansy SS (2004) Agarose cell block: innovated technique fort he processing of urine cytology for electron microscopy examination. Ultrastruct Pathol 28:15–21PubMedGoogle Scholar
  26. 26.
    McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9:713–725PubMedCrossRefGoogle Scholar
  27. 27.
    Meyer EP, Ulmann-Schuler A, Staufenbiel M, Krucker T (2008) Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer’s disease. Proc Natl Acad Sci USA 105:3587–3592PubMedCrossRefGoogle Scholar
  28. 28.
    Minnich B, Bartel H, Lametschwandtner A (2001) Quantitative microvascular corrosion casting by 2D- and 3D-morphometry. Ital J Anat Embryol 106:213–220PubMedGoogle Scholar
  29. 29.
    Moskaluk CA, Stoler MH (2002) Agarose mold embedding of cultured cells for tissue microarrays. Diagn Mol Pathol 11:234–238PubMedCrossRefGoogle Scholar
  30. 30.
    Murakami T, Unehira M, Kawakami H, Kubotsu A (1973) Osmium impregnation of methyl methacrylate vascular casts for scanning electron microscopy. Arch Histol Jpn 36:119–124PubMedCrossRefGoogle Scholar
  31. 31.
    Murray AG, Schulze H, Blauw E (1991) In situ embedding of cell monolayers cultured on plastic surfaces for electron microscopy. Biotech Histochem 66:269–272PubMedCrossRefGoogle Scholar
  32. 32.
    Nousek-Goebl NA, Press MF (1986) Golgi-Electron microscopic study of sprouting endothelial cells in the neonatal rat cerebellar cortex. Dev Brain Res 30:67–73CrossRefGoogle Scholar
  33. 33.
    Oorschot V, de Wit H, Annaert WG, Klumperman J (2002) A novel flat-embedding method to prepare ultrathin cryosections from cultured cells in their in situ orientation. J Histochem Cytochem 50:1067–1080PubMedCrossRefGoogle Scholar
  34. 34.
    Patan S (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodelling. J Neurooncol 50:1–15PubMedCrossRefGoogle Scholar
  35. 35.
    Patan S (2004) Vasculogenesis and angiogenesis. Cancer Treat Res 117:3–32PubMedCrossRefGoogle Scholar
  36. 36.
    Plendl J, Neumüller C, Vollmar A, Auerbach R, Sinowatz F (1996) Isolation and characterization of endothelial cells from different organs of fetal pigs. Anat Embryol 194:445–456PubMedCrossRefGoogle Scholar
  37. 37.
    Polykandriotis E, Arkudas A, Beier JP, Dragu A, Rath S, Pryymachuk G, Schmidt VJ, Lametschwandtner A, Hordch RE, Kneser U (2011) The impact of VEGF and bFGF on vascular steriomorphology in the context of angiogenic neo-arborisation after vascular induction. J Electron Microsc. doi: 10.1093/jmicro/dfr025
  38. 38.
    Protrain (2011) Courses in electron microscopy – Hints and tips. Chapman S. (ed) Internet publication: (21.07.2011)
  39. 39.
    Reville WJ, Heapes MM, O’Sullivan VR (1994) A survey to assess the ultrastructural preservation of fixed biological samples after air-drying from tetramethylsilane. J Electron Microsc 43:111–115Google Scholar
  40. 40.
    Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain for electron microscopy. J Cell Biol 17:208PubMedCrossRefGoogle Scholar
  41. 41.
    Richardson KC, Jarett L, Finke EH (1960) Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol 35:313–325PubMedGoogle Scholar
  42. 42.
    Riesau W (1997) Mechanisms of angiogenesis. Nature 386:671–674CrossRefGoogle Scholar
  43. 43.
    Romeis B (2010) Mikroskopische Technik (Microscopical technique). In: Mulisch M, Welsch U (eds). 18th ed. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  44. 44.
    Sato T (1967) A modified method for lead staining of thin sections. J Electron Microsc 16:133Google Scholar
  45. 45.
    Schrand AM, Schlager JJ, Dai L, Hussain SM (2010) Preparation of cells for assessing ultrastructural localization of nanoparticles with transmission electron microscopy. Nat Protoc 5:744–757Google Scholar
  46. 46.
    Slizova D, Krs O, Pospisilova B (2003) Alternative method of rapid drying vascular specimens for scanning electron microscopy. J Endovasc Ther 10:285–287PubMedCrossRefGoogle Scholar
  47. 47.
    Taniguchi Y, Tamatani R, Kawarai Y (1994) A reliable method of embedding a small amount of dispersed cells for electron microscopy. J Electron Microsc 43:48–50Google Scholar
  48. 48.
    Taupin P (2008) A simple and direct pre-embedding technique for ultrastructure of scarce biological specimens. Biotech Histochem 83:253–257PubMedCrossRefGoogle Scholar
  49. 49.
    Thurston G, McLean JW, Rizen M, Baluk P, Haskell A, Murphy TH, Hanahan D, McDonald DM (1998) Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Invest 101:1401–1413PubMedCrossRefGoogle Scholar
  50. 50.
    Townsend LE, Gover JL, Seymour MS (1996) Transmission electron microscopy procedure for endothelial cell culture with angiogenesis. Methods Cell Sci 18:15–18CrossRefGoogle Scholar
  51. 51.
    Tschanz SA, Burri PH, Weibel ER (2011) A simple tool for stereological assessment of digital images: the STEPanizer. J Microsc 243:47–59CrossRefGoogle Scholar
  52. 52.
    Ulmann-Schuler A, Krucker T, Meyer EP (2007) PU4ii vascular casting combined with histological staining methods. In: Proceedings advances in vascular casting, University of Salzburg, pp 94–97Google Scholar
  53. 53.
    Venable JH, Coggeshall R (1965) A simplified lead citrate stain for use in electron microscopy. J Cell Biol 25:407–408PubMedCrossRefGoogle Scholar
  54. 54.
    Wei W, Popov V, Walocha JA, Wen J, Bello-Reuss E (2006) Evidence of angiogenesis and microvascular regression in autosomal-dominant polycystic kidney disease kidneys: a corrosion cast study. Kidney Int 70:1261–1268PubMedCrossRefGoogle Scholar
  55. 55.
    Widehn S, Kindblom LG (1990) Agarose embedding: a new method for the ultrastructural examination of the in-situ morphology of cell cultures. Ultrastruct Pathol 14:81–85PubMedCrossRefGoogle Scholar
  56. 56.
    Yoshida D, Noha M, Watanabe K, Sugisaki Y, Teramoto A (2001) Novel approach to analysis of in vitro tumor angiogenesis with a variable-pressure scanning electron microscope: suppression by matrix metalloproteinase inhibitor SI-27. Brain Tumor Pathol 18:89–100PubMedCrossRefGoogle Scholar
  57. 57.
    Yuan LC, Gulyas BJ (1981) An improved method for processing single cells for electron microscopy utilizing agarose. Anat Rec 201:273–281PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Faculty of Veterinary Medicine, Institute for Veterinary AnatomyFreie Universität BerlinBerlinGermany

Personalised recommendations