Ex Vivo and In Vivo Assessments of Angiogenesis, Blood Flow and Vasoactive Capability

  • N. M. Rogers
  • M. Yao
  • M. W. Zimmerman
  • D. D. Roberts
  • Jeffrey S. Isenberg


Cardiovascular disease remains a continuing health threat for much of the world’s population. Basic discoveries utilizing cell based assays provide initial insights into signaling pathways and potential molecular targets for developing novel therapeutics. These targets must be validated in more complex vascular cell systems through in vivo models of vascular responses to assess their potential efficacy and specificity. We have focused on developing several models that recapitulate angiogenic responses, vascular cell activity and in vivo blood flow dynamics to provide such clinically relevant data. Our models have been optimized to be technically straightforward for those not experienced in using composite tissue assays and/or animal work in the hope that these approaches will become more accessible to basic scientists. Our focus on small mammals and in particular mice is based on our belief that studying vascular responses in genetically altered animals where target genes are knocked out, knocked in, or conditionally expressed provides powerful insights into the pathogenesis of vascular disease and therapeutic opportunities. Therapeutic strategies developed in mice must also be validated in higher mammals to estimate their potential for treating human disease.


Vascular Smooth Muscle Cell Hind Limb Blood Oxygen Level Dependent Angiogenic Response Full Thickness Skin Graft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31PubMedCrossRefGoogle Scholar
  2. 2.
    Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395PubMedCrossRefGoogle Scholar
  3. 3.
    Hiraoka N, Allen E, Apel IJ, Gyetko MR, Weiss SJ (1998) Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 95:365–377PubMedCrossRefGoogle Scholar
  4. 4.
    Isenberg JS, Calzada MJ, Zhou L, Guo N, Lawler J, Wang XQ, Frazier WA, Roberts DD (2005) Endogenous thrombospondin-1 is not necessary for proliferation but is permissive for vascular smooth muscle cell responses to platelet-derived growth factor. Matrix Biol 24:110–123PubMedCrossRefGoogle Scholar
  5. 5.
    Isenberg JS, Ridnour LA, Perruccio EM, Espey MG, Wink DA, Roberts DD (2005) Thrombospondin-1 inhibits endothelial cell responses to nitric oxide in a cGMP-dependent manner. Proc Natl Acad Sci U S A 102:13141–13146PubMedCrossRefGoogle Scholar
  6. 6.
    Reed MJ, Karres N, Eyman D, Vernon RB (2007) Culture of murine aortic explants in 3-dimensional extracellular matrix: a novel, miniaturized assay of angiogenesis in vitro. Microvasc Res 73:248–252PubMedCrossRefGoogle Scholar
  7. 7.
    St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202PubMedCrossRefGoogle Scholar
  8. 8.
    Isenberg JS, Hyodo F, Matsumoto K, Romeo MJ, Abu-Asab M, Tsokos M, Kuppusamy P, Wink DA, Krishna MC, Roberts DD (2007) Thrombospondin-1 limits ischemic tissue survival by inhibiting nitric oxide-mediated vascular smooth muscle relaxation. Blood 109:1945–1952PubMedCrossRefGoogle Scholar
  9. 9.
    Hearse DJ (1990) Ischemia, reperfusion, and the determinants of tissue injury. Cardiovasc Drugs Ther 4 Suppl 4:767–776PubMedCrossRefGoogle Scholar
  10. 10.
    Attanasio S, Snell J (2009) Therapeutic angiogenesis in the management of critical limb ischemia: current concepts and review. Cardiol Rev 17:115–120PubMedCrossRefGoogle Scholar
  11. 11.
    Granger DN, Hollwarth ME, Parks DA (1986) Ischemia-reperfusion injury: role of oxygen-derived free radicals. Acta Physiol Scand Suppl 548:47–63PubMedGoogle Scholar
  12. 12.
    Kloner RA, Przyklenk K, Whittaker P (1989) Deleterious effects of oxygen radicals in ischemia/reperfusion. Resolved and unresolved issues. Circulation 80:1115–1127CrossRefGoogle Scholar
  13. 13.
    Pascher A, Klupp J (2005) Biologics in the treatment of transplant rejection and ischemia/reperfusion injury: new applications for TNFalpha inhibitors? BioDrugs 19:211–231PubMedCrossRefGoogle Scholar
  14. 14.
    De Santis G, Pinelli M (1994) Microsurgical model of ischemia reperfusion in rat muscle: evidence of free radical formation by spin trapping. Microsurgery 15:655–659PubMedCrossRefGoogle Scholar
  15. 15.
    Menger MD, Laschke MW, Amon M, Schramm R, Thorlacius H, Rucker M, Vollmar B (2003) Experimental models to study microcirculatory dysfunction in muscle ischemia-reperfusion and osteomyocutaneous flap transfer. Langenbecks Arch Surg 388:281–290PubMedCrossRefGoogle Scholar
  16. 16.
    Hawaleshka A, Jacobsohn E (1998) Ischaemic preconditioning: mechanisms and potential clinical applications. Can J Anaesth 45:670–682PubMedCrossRefGoogle Scholar
  17. 17.
    Agnew NM, Pennefather SH, Russell GN (2002) Isoflurane and coronary heart disease. Anaesthesia 57:338–347PubMedCrossRefGoogle Scholar
  18. 18.
    Smahel J (1977) The healing of skin grafts. Clin Plast Surg 4:409–424PubMedGoogle Scholar
  19. 19.
    Andreassi A, Bilenchi R, Biagioli M, D’Aniello C (2005) Classification and pathophysiology of skin grafts. Clin Dermatol 23:332–337PubMedCrossRefGoogle Scholar
  20. 20.
    Haramati J, Soppe C, Zuniga MC (2007) A rapid method for skin grafting in mice that greatly enhances graft and recipient survival. Transplantation 84:1364–1367PubMedCrossRefGoogle Scholar
  21. 21.
    Mayumi H, Nomoto K, Good RA (1988) A surgical technique for experimental free skin grafting in mice. Jpn J Surg 18:548–557PubMedCrossRefGoogle Scholar
  22. 22.
    Isenberg JS, Pappan LK, Romeo MJ, Abu-Asab M, Tsokos M, Wink DA, Frazier WA, Roberts DD (2008) Blockade of thrombospondin-1-CD47 interactions prevents necrosis of full thickness skin grafts. Ann Surg 247:180–190PubMedCrossRefGoogle Scholar
  23. 23.
    Das M, Aronow WS, McClung JA, Belkin RN (2006) Increased prevalence of coronary artery disease, silent myocardial ischemia, complex ventricular arrhythmias, atrial fibrillation, left ventricular hypertrophy, mitral annular calcium, and aortic valve calcium in patients with chronic renal insufficiency. Cardiol Rev 14:14–17PubMedCrossRefGoogle Scholar
  24. 24.
    Isenberg JS, Shiva S, Gladwin MT (2009) Thrombospondin-1-CD47 blockade and exogenous nitrite enhance ischemic tissue survival, blood flow and angiogenesis via coupled NO-cGMP pathway activation. Nitric Oxide 21:52–62PubMedCrossRefGoogle Scholar
  25. 25.
    Isenberg JS, Romeo MJ, Maxhimer JB, Smedley J, Frazier WA, Roberts DD (2008) Gene silencing of CD47 and antibody ligation of thrombospondin-1 enhance ischemic tissue survival in a porcine model: implications for human disease. Ann Surg 247:860–868PubMedCrossRefGoogle Scholar
  26. 26.
    Hellingman AA, Bastiaansen AJ, de Vries MR, Seghers L, Lijkwan MA, Lowik CW, Hamming JF, Quax PH (2010) Variations in surgical procedures for hind limb ischaemia mouse models result in differences in collateral formation. Eur J Vasc Endovasc Surg 40:796–803PubMedCrossRefGoogle Scholar
  27. 27.
    Isenberg JS, Hyodo F, Pappan LK, Abu-Asab M, Tsokos M, Krishna MC, Frazier WA, Roberts DD (2007) Blocking thrombospondin-1/CD47 signaling alGoogle Scholar
  28. 28.
    Padubidri AN, Browne E Jr (1997) Modification in flap design of the epigastric artery flap in rats--a new experimental flap model. Ann Plast Surg 39:500–504PubMedCrossRefGoogle Scholar
  29. 29.
    Bonheur JA, Albadawi H, Patton GM, Watkins MT (2004) A noninvasive murine model of hind limb ischemia-reperfusion injury. J Surg Res 116:55–63PubMedCrossRefGoogle Scholar
  30. 30.
    Que X, Debonera F, Xie J, Furth EE, Aldeguer X, Gelman AE, Olthoff KM (2004) Pattern of ischemia reperfusion injury in a mouse orthotopic liver transplant model. J Surg Res 116:262–268PubMedCrossRefGoogle Scholar
  31. 31.
    Schneeberger H, Aydemir S, Illner WD, Land W (1997) Nonspecific primary ischemia/reperfusion injury in combination with secondary specific acute rejection-mediated injury of human kidney allografts contributes mainly to development of chronic transplant failure. Transplant Proc 29:948–949PubMedCrossRefGoogle Scholar
  32. 32.
    Feng L, Xiong Y, Cheng F, Zhang L, Li S, Li Y (2004) Effect of ligustrazine on ischemia-reperfusion injury in murine kidney. Transplant Proc 36:1949–1951PubMedCrossRefGoogle Scholar
  33. 33.
    Nath KA, Grande JP, Croatt AJ, Frank E, Caplice NM, Hebbel RP, Katusic ZS (2005) Transgenic sickle mice are markedly sensitive to renal ischemia-reperfusion injury. Am J Pathol 166:963–972PubMedCrossRefGoogle Scholar
  34. 34.
    Isenberg JS, Maxhimer JB, Powers P, Tsokos M, Frazier WA, Roberts DD (2008) Treatment of liver ischemia-reperfusion injury by limiting thrombospondin-1/CD47 signaling. Surgery 144:752–761PubMedCrossRefGoogle Scholar
  35. 35.
    Isenberg JS, Romeo MJ, Abu-Asab M, Tsokos M, Oldenborg A, Pappan L, Wink DA, Frazier WA, Roberts DD (2007) Increasing survival of ischemic tissue by targeting CD47. Circ Res 100:712–720PubMedCrossRefGoogle Scholar
  36. 36.
    Isenberg JS, Annis DS, Pendrak ML, Ptaszynska M, Frazier WA, Mosher DF, Roberts DD (2009) Differential interactions of thrombospondin-1, -2, and -4 with CD47 and effects on cGMP signaling and ischemic injury responses. J Biol Chem 284:1116–1125PubMedCrossRefGoogle Scholar
  37. 37.
    Isenberg JS, Hyodo F, Ridnour LA, Shannon CS, Wink DA, Krishna MC, Roberts DD (2008) Thrombospondin 1 and vasoactive agents indirectly alter tumor blood flow. Neoplasia 10:886–896PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • N. M. Rogers
    • 1
  • M. Yao
    • 1
  • M. W. Zimmerman
    • 2
  • D. D. Roberts
    • 3
  • Jeffrey S. Isenberg
    • 4
    • 5
    • 6
    • 7
  1. 1.Vascular Medicine InstituteUniversity of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Department of Pharmacology and Chemical BiologyUniversity of Pittsburgh School of MedicinePittsburghUSA
  3. 3.Laboratory of Pathology, Center for Cancer ResearchNational Cancer Institute (NCI), National Institutes of Health (NIH)BethesdaUSA
  4. 4.Vascular Medicine InstituteUniversity of Pittsburgh School of MedicinePittsburghUSA
  5. 5.Division of Pulmonary, Allergy and Critical Care MedicineUniversity of Pittsburgh School of MedicinePittsburghUSA
  6. 6.Institute for Transfusion MedicinePittsburghUSA
  7. 7.Hemophilia Center of Western PennsylvaniaPittsburghUSA

Personalised recommendations