Skip to main content
  • 1335 Accesses

Abstract

Quantum dots (QDs) are inorganic fluorescent nanoparticles that have found tremendous application in the field of biomedical imaging. QDs have superior photoluminescence properties over traditionally utilized fluorescent probes such as being brighter and more photostable. Their unique advantages make them attractive alternatives to conventional fluorescent dyes and show promise in tumor diagnostics and therapy. In recent years, more and more studies show that QD based nanoparticles with specificity for activated endothelial cells can be used to image ongoing angiogenesis. In this chapter, we will briefly introduce the methods of preparing targeted QDs based probes for angiogenesis imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michalet X, Pinaud FF, Bentolila LA et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  PubMed  CAS  Google Scholar 

  2. Chen X, Li ZB, Cai W (2007) Semiconductor quantum dots for in vivo imaging. J Nanosci Nanotechnol 7:2567–2581

    Article  PubMed  Google Scholar 

  3. Su XG, Ma QA (2010) Near-infrared quantum dots: synthesis, functionalization and analytical applications. Analyst 135:1867–1877

    Article  PubMed  Google Scholar 

  4. Nie SM, Gao XH, Yang LL, Petros JA, Marshal FF, Simons JW (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16:63–72

    Article  PubMed  Google Scholar 

  5. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  PubMed  CAS  Google Scholar 

  6. Biju V, Mundayoor S, Omkumar RV, Anas A, Ishikawa M (2010) Bioconjugated quantum dots for cancer research: present status, prospects and remaining issues. Biotechnol Adv 28:199–213

    Article  PubMed  CAS  Google Scholar 

  7. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  8. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  PubMed  CAS  Google Scholar 

  9. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  10. Harris AL (2002) Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    Article  PubMed  CAS  Google Scholar 

  11. Ghasemi Y, Peymani P, Afifi S (2009) Quantum dot: magic nanoparticle for imaging, detection and targeting. Acta Biomed 80:156–165

    PubMed  Google Scholar 

  12. Gao JH, Chen XY, Cheng Z (2010) Near-infrared quantum dots as optical probes for tumor imaging. Curr Top Med Chem 10:1147–1157

    Article  PubMed  CAS  Google Scholar 

  13. Medintz IL, Delehanty JB, Mattoussi H (2009) Delivering quantum dots into cells: strategies, progress and remaining issues. Anal Bioanal Chem 393:1091–1105

    Article  PubMed  Google Scholar 

  14. Douroumis D, Obonyo O, Fisher E, Edwards M (2010) Quantum dots synthesis and biological applications as imaging and drug delivery systems. Crit Rev Biotechnol 30:283–301

    Article  PubMed  Google Scholar 

  15. Chen XY, Cai WB (2008) Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat Protoc 3:89–96

    Article  PubMed  Google Scholar 

  16. Liu ZA, Peng R (2010) Inorganic nanomaterials for tumor angiogenesis imaging. Eur J Nucl Med Mol Imaging 37:S147–S163

    Article  PubMed  Google Scholar 

  17. Zhang Y, Li JB, Wu DD, Miao ZR (2010) Preparation of quantum dot bioconjugates and their applications in bio-imaging. Curr Pharm Biotechnol 11:662–671

    Article  PubMed  Google Scholar 

  18. Goepferich A, Hild WA, Breunig M (2008) Quantum dots – nano-sized probes for the exploration of cellular and intracellular targeting. Eur J Pharm Biopharm 68:153–168

    Article  PubMed  Google Scholar 

  19. Lidke DS, Nagy P, Heintzmann R et al (2004) Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 22:198–203

    Article  PubMed  CAS  Google Scholar 

  20. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445

    Article  PubMed  CAS  Google Scholar 

  21. Simon SM, Jaiswal JK, Mattoussi H, Mauro JM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51

    Article  PubMed  Google Scholar 

  22. Nie SM, Chan WCW (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  PubMed  Google Scholar 

  23. Ma H, Zhang CY, Nie SM, Ding Y, Jin L, Chen DY (2000) Quantum dot-labeled trichosanthin. Analyst 125:1029–1031

    Article  Google Scholar 

  24. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    Article  PubMed  CAS  Google Scholar 

  25. Wu XY, Liu HJ, Liu JQ et al (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46

    Article  PubMed  CAS  Google Scholar 

  26. Srinivasan C, Lee J, Papadimitrakopoulos F, Silbart LK, Zhao M, Burgess DJ (2006) Labeling and intracellular tracking of functionally active plasmid DNA with semiconductor quantum dots. Mol Ther 14:192–201

    Article  PubMed  CAS  Google Scholar 

  27. Hanaki K, Momo A, Oku T et al (2003) Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun 302:496–501

    Article  PubMed  CAS  Google Scholar 

  28. Goldman ER, Anderson GP, Tran PT, Mattoussi H, Charles PT, Mauro JM (2002) Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal Chem 74:841–847

    Article  PubMed  CAS  Google Scholar 

  29. Griffioen AW, Molema G (2000) Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 52:237–268

    PubMed  CAS  Google Scholar 

  30. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC (1998) Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 4:623–626

    Article  PubMed  CAS  Google Scholar 

  31. Chen X, Cai W (2007) Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Front Biosci 12:4267–4279

    Article  PubMed  Google Scholar 

  32. Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2:795–803

    Article  PubMed  CAS  Google Scholar 

  33. Chen X, Wang H, Cai WB et al (2007) A new PET tracer specific for vascular endothelial growth factor receptor 2. Eur J Nucl Med Mol Imaging 34:2001–2010

    Article  PubMed  Google Scholar 

  34. Chen XY, Cai WB, Chen K et al (2006) PET of vascular endothelial growth factor receptor expression. J Nucl Med 47:2048–2056

    PubMed  Google Scholar 

  35. Kim KJ, Li B, Winer J et al (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844

    Article  PubMed  CAS  Google Scholar 

  36. Ferrara N, Hillan KJ, Novotny W (2005) Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 333:328–335

    Article  PubMed  CAS  Google Scholar 

  37. Chen X, Chen K, Li ZB, Wang H, Cai WB (2008) Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur J Nucl Med Mol Imaging 35:2235–2244

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bhirde, A., Xing, R., Lee, S., Chen, X. (2012). Quantum Dots for Imaging of Angiogenesis. In: Zudaire, E., Cuttitta, F. (eds) The Textbook of Angiogenesis and Lymphangiogenesis: Methods and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4581-0_20

Download citation

Publish with us

Policies and ethics