Visualization and Quantification of De Novo Angiogenesis in Ex Ovo Chicken Embryos



The formation of new blood vessels through de novo angiogenesis is a fundamental process in developmental biology and pathogenesis, during which changes in the vasculature can be highly dynamic and involve proliferation, migration, sprouting, and remodeling. In this chapter, methodologies are described which allow for the precise temporal and spatial quantification of angiogenesis in an ex ovo chicken embryo model. A protocol is detailed that allows for the enumeration of blood vessels in newly vascularized collagen onplants placed on the chorioallantoic membrane. Onplants can be infused with growth factors, cytokines, pro- or anti-angiogenic factors or even living cells to determine the precise impact on de novo angiogenesis. A complementary intravital imaging approach is also described that allows for the visualization and evaluation of angiogenesis in ex ovo chicken embryos as it occurs in real time. These highly scalable assays evaluate new vessel growth in an intact tissue where angiogenesis naturally occurs, and importantly, allow one to evaluate factors that inhibit vascularization without impacting pre-existing vessels.


  1. 1.
    Auerbach R, Kubai L, Knighton D, Folkman J (1974) A simple procedure for the long-term cultivation of chicken embryos. Dev Biol 41(2):391–394PubMedCrossRefGoogle Scholar
  2. 2.
    Ribatti D (2004) The first evidence of the tumor-induced angiogenesis in vivo by using the chorioallantoic membrane assay dated 1913. Leukemia 18(8):1350–1351PubMedCrossRefGoogle Scholar
  3. 3.
    Leong HS, Steinmetz NF, Ablack A, Destito G, Zijlstra A, Stuhlmann H et al (2010) Intravital imaging of embryonic and tumor neovasculature using viral nanoparticles. Nat Protoc 5(8):1406–1417PubMedCrossRefGoogle Scholar
  4. 4.
    Zijlstra A, Lewis J, Degryse B, Stuhlmann H, Quigley JP (2008) The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell 13(3):221–234PubMedCrossRefGoogle Scholar
  5. 5.
    Wallis JW, Aerts J, Groenen MA, Crooijmans RP, Layman D, Graves TA et al (2004) A physical map of the chicken genome. Nature 432(7018):761–764PubMedCrossRefGoogle Scholar
  6. 6.
    Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432(7018):695–716CrossRefGoogle Scholar
  7. 7.
    van de Lavoir MC, Diamond JH, Leighton PA, Mather-Love C, Heyer BS, Bradshaw R et al (2006) Germline transmission of genetically modified primordial germ cells. Nature 441(7094):766–769PubMedCrossRefGoogle Scholar
  8. 8.
    Lewis JD, Destito G, Zijlstra A, Gonzalez MJ, Quigley JP, Manchester M et al (2006) Viral nanoparticles as tools for intravital vascular imaging. Nat Med 12(3):354–360PubMedCrossRefGoogle Scholar
  9. 9.
    MacDonald IC, Schmidt EE, Morris VL, Chambers AF, Groom AC (1992) Intravital videomicroscopy of the chorioallantoic microcirculation: a model system for studying metastasis. Microvasc Res 44(2):185–199PubMedCrossRefGoogle Scholar
  10. 10.
    Jilani SM, Murphy TJ, Thai SN, Eichmann A, Alva JA, Iruela-Arispe ML (2003) Selective binding of lectins to embryonic chicken vasculature. J Histochem Cytochem 51(5):597–604PubMedCrossRefGoogle Scholar
  11. 11.
    Ribatti D, Vacca A, Roncali L, Dammacco F (1996) The chick embryo chorioallantoic membrane as a model for in vivo research on angiogenesis. Int J Dev Biol 40(6):1189–1197PubMedGoogle Scholar
  12. 12.
    Zijlstra A, Seandel M, Kupriyanova TA, Partridge JJ, Madsen MA, Hahn-Dantona EA et al (2006) Proangiogenic role of neutrophil-like inflammatory heterophils during neovascularization induced by growth factors and human tumor cells. Blood 107(1):317–327PubMedCrossRefGoogle Scholar
  13. 13.
    Pink D, Fung L, Zijlstra A, Lewis JD (2012) Real-time visualization and quantitation of vascular permeability in vivo: implications for drug delivery. PLoS One 7:e33760PubMedCrossRefGoogle Scholar
  14. 14.
    Zijlstra A, Mellor R, Panzarella G, Aimes RT, Hooper JD, Marchenko ND et al (2002) A quantitative analysis of rate-limiting steps in the metastatic cascade using human-specific real-time polymerase chain reaction. Cancer Res 62(23):7083–7092PubMedGoogle Scholar
  15. 15.
    Ausprunk DH, Knighton DR, Folkman J (1975) Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois. Role of host and preexisting graft blood vessels. Am J Pathol 79(3):597–618PubMedGoogle Scholar
  16. 16.
    Brooks PC, Montgomery AM, Cheresh DA (1999) Use of the 10-day-old chick embryo model for studying angiogenesis. Methods Mol Biol 129:257–269PubMedGoogle Scholar
  17. 17.
    Zijlstra A, Aimes RT, Zhu D, Regazzoni K, Kupriyanova T, Seandel M et al (2004) Collagenolysis-dependent angiogenesis mediated by matrix metalloproteinase-13 (collagenase-3). J Biol Chem 279(26):27633–27645PubMedCrossRefGoogle Scholar
  18. 18.
    Arpaia E, Blaser H, Quintela-Fandino M, Duncan G, Leong HS, Ablack A et al (2011) The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk. Oncogene 31:884–896PubMedCrossRefGoogle Scholar
  19. 19.
    Cho CF, Ablack A, Leong HS, Zijlstra A, Lewis J (2011) Evaluation of nanoparticle uptake in tumors in real time using intravital imaging. J Vis Exp (52)Google Scholar
  20. 20.
    Leong HS, Lizardo MM, Ablack A, McPherson VA, Wandless TJ, Chambers AF et al (2012) Imaging the impact of chemically inducible proteins on cellular dynamics in vivo. PLoS One 7(1):e30177PubMedCrossRefGoogle Scholar
  21. 21.
    Steinmetz NF, Ablack AL, Hickey JL, Ablack J, Manocha B, Mymryk JS et al (2011) Intravital imaging of human prostate cancer using viral nanoparticles targeted to gastrin-releasing Peptide receptors. Small 7(12):1664–1672PubMedCrossRefGoogle Scholar
  22. 22.
    Steinmetz NF, Cho CF, Ablack A, Lewis JD, Manchester M (2011) Cowpea mosaic virus nanoparticles target surface vimentin on cancer cells. Nanomedicine (Lond) 6(2):351–364CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of PathologyVanderbilt UniversityNashvilleUSA
  2. 2.Department of OncologyUniversity of AlbertaEdmontonCanada

Personalised recommendations