Advertisement

Aspects of Atmospheric Pollution in Siberia

  • Alexander A. Baklanov
  • Vladimir V. Penenko
  • Alexander G. Mahura
  • Anna A. Vinogradova
  • Nikolai F. Elansky
  • Elena A. Tsvetova
  • Olga Yu. Rigina
  • Leonid O. Maksimenkov
  • Roman B. Nuterman
  • Fedor A. Pogarskii
  • Ashraf Zakey
Chapter
Part of the Springer Environmental Science and Engineering book series (SPRINGERENVIRON)

Abstract

This chapter considers specific atmospheric pollution problems in Siberia, the current state of studies and strategic activities, and peculiarities of Siberian environmental protection problems, risk assessment, and tendencies in atmospheric pollution in Siberia, including health-affecting pollutants, greenhouse gases, aerosols, etc. The chapter does not presume to cover all the aspects of atmospheric pollution in Siberia. Its main focus is a short general overview of the existing problems of airborne pollution in Siberia and methodological aspects of air pollution impact assessments followed by several examples of such studies for Siberia. In particular, the following issues are described: (1) sources and characteristics of air pollution in Siberia, (2) air quality and atmospheric composition characterization, (3) assessment of airborne pollution in Siberia from air and space, (4) methodology and models for air pollution assessment on different scales, and (5) case studies of long-range atmospheric transport of heavy metals from industries of the Ural and Norilsk regions.

Keywords

Aerosol Optical Depth Deposition Velocity Atmospheric Transport Surface Ozone Concentration Norilsk Nickel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. annual state of air pollution and pollutant emissions into the atmosphere of towns and industrial centers of the Soviet Union, vol “Pollutant Emissions”. Leningrad, 1990, 486 pp (in Russian)Google Scholar
  2. Ankilov A et al (2002a) Particle size dependent response of aerosol counters. Atmos Res 62:209–237CrossRefGoogle Scholar
  3. Ankilov A et al (2002b) Intercomparison of number concentration measurements by various aerosol particle counters. Atmos Res 62:177–207CrossRefGoogle Scholar
  4. Arshinov MYu, Belan BD (2011) New particle formation events in the Siberian boreal zone. Geophys Res Abstr 13, EGU2011–5582–2, EGU General Assembly 2011Google Scholar
  5. Baklanov A (2000) Modeling of the atmospheric radionuclide transport: local to regional scale. Numer Math Math Model, RAS Inst Num Math, Moscow 2:244–266Google Scholar
  6. Baklanov A (2007) Environmental risk and assessment modeling: scientific needs and expected advancements. In: Ebel A, Davitashvili T (eds) Air, water and soil quality modeling for risk and impact assessment, Security through science, series C – environmental security. Springer/Elsevier Publishers, Dordrecht, pp 29–44CrossRefGoogle Scholar
  7. Baklanov AA, Co-Authors (2008a) In: Baklanov A, Gordov E (eds) Enviro-RISKS: man-induced environmental risks: monitoring, management and remediation of man-made changes in Siberia. DMI Scientific Report 08–05 in 4 volumes: vol 1 Atmoispheric pollution and risk; vol 2 Climate and global change and risks; vol 3 Terrestrial ecosystems and hydrology; vol 4 Information systems, integration and synthesis. ISBN: 978–87–7478–571–2 (to be published as a Springer book)Google Scholar
  8. Baklanov A, Sørensen JH, Mahura A (2008b) Methodology for probabilistic atmospheric studies using long-term dispersion modelling. Environ Model Assess 13:541–552. doi: 10.1007/s10666-007-9124-4 CrossRefGoogle Scholar
  9. Bashurova VS, Dreiling V, Hodger TV, Jaenicke R, Koutsenogii KP, Koutsenogii PK, Kraemer M, Makarov VI, Obolkin VA, Potjomkin VL, Pusep AY (1992) Measurements of atmospheric condensation nuclei size distributions in Siberia. J Aerosol Sci 23:191–199CrossRefGoogle Scholar
  10. Belan BD (2010) Ozone in the troposphere. Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Sciences, Tomsk, 487 ppGoogle Scholar
  11. Belan BD, Zadde GO, Ivlev GA et al (2007) Complex assessment of the conditions of the air basin over Norilsk industrial region. Part 5. Impurities in the atmospheric boundary layer. The correspondence of air composition to hygienic norms. Recommendations. Atmos Ocean Opt 20(6):119–129 (Engl. Transl)Google Scholar
  12. Belan BD, Tolmachev GN, Fofonov ÀV (2010) Vertical ozone distribution in troposphere above south regions of West Siberia. Atmos Ocean Opt 23:777–783Google Scholar
  13. Bellouin N, Boucher O, Haywood J, Reddy MS (2005) Global estimate of aerosol direct radiative forcing from satellite measurements. Nature 438:1138–1141CrossRefGoogle Scholar
  14. Benkovitz CM, Scholtz MT, Pacyna J, Tawasou L, Dignon J, Voldner EC, Spiro PA, Logan JA, Graedel TE (1996) Global gridded inventories of anthropogenic emissions of sulfur and nitrogen. J Geophys Res 101:29239–29252CrossRefGoogle Scholar
  15. Bezuglaya EYu (ed) (1999) Air quality in largest cities of Russia for 10 years (1988–1997). Hydrometeoizdat, St-Petersburg, 146 p (in Russian)Google Scholar
  16. Bondur VG (2010) Importance of aerospace remote sensing approach to natural fires monitoring in Russia. Vestnik Otd. Nauk o Zemle RAS, Moscow, 2, NZ11001. doi: 10.2205/2010NZ000062
  17. Chen S-J, Kuo Y-H, Zhang P-Z, Bai Q-F (1991) Synoptic climatology of ciclogenesis over East Asia, 1958–1987. Mon Wea Rev 119:1407–1418CrossRefGoogle Scholar
  18. Chung Y-S, Hage KD, Reinelt ER (1976) On lee cyclogenesis and airflow in the Canadian Rocky mountains and the East Asian mountains. Mon Wea Rev 104:879–891CrossRefGoogle Scholar
  19. Chung CE, Ramanathan V, Kim D, Podgorny IA (2005) Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. J Geophys Res 110:D24207. doi: 10.1029/2005JD006356 CrossRefGoogle Scholar
  20. Colwell R (ed) (1983) Manual of remote sensing, vol 1. American Society of Photogrammetry, Falls ChurchGoogle Scholar
  21. Dal Maso M et al (2008) Aerosol particle formation events at two Siberian stations inside the boreal forest. Boreal Environ Res 13(2):81–92Google Scholar
  22. Derome J, Lukina N (2011) Interaction between environmental pollution and land-cover/land-use change in Arctic areas. In: Gutman G, Reissell A (eds) Eurasian arctic land cover and land use in a changing climate, VI. Springer, Amsterdam, pp 269–290, 306 ppGoogle Scholar
  23. Draxler RR, Rolph GD (2003) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model, NOAA ARL READY Website: http://www.arl.noaa.gov/ready/hysplit4.html
  24. Ekstrand S (1993) Assessment of forest damage using Landsat TM, elevation models and digital forest maps. PhD thesis, Royal Institute of Technology, StockholmGoogle Scholar
  25. Elansky NF (2004) Atmospheric monitoring: Russian contribution. Sci Russ 6:20–26Google Scholar
  26. Elansky NF (2009a) Russian studies of the atmospheric ozone in 2003–2006. Izv Atmos Ocean Phys 45:218–231CrossRefGoogle Scholar
  27. Elansky NF (ed) (2009b) Atmospheric composition observations over Northern Eurasia using the mobile laboratory TROICA experiments. The International Science and Technology Center, Moscow, 74 p. ISBN 978–5–904610–03–6Google Scholar
  28. Elansky NF, Belikov IB, Golitsyn GS, Grisenko AM, Lavrova OV, Pankratova NV, Safronov AN, Skorokhod AI, Shumckii RA (2010) Observations of the atmosphere composition in the Moscow megapolis from a mobile laboratory. Doklady Earth Sci 432:649–655CrossRefGoogle Scholar
  29. Galperin MV, Sofiev M, Gusev A et al (1995) Approaches to simulation of heavy metals transboundary pollution of the European atmosphere. Report 7/95. EMEP/MSC East, Moscow, 85 pp (in Russian)Google Scholar
  30. GGO (2009) Air quality in large cities of Russia during ten years 1998–2007. Analytical review. Voeikov Main Geophysical Observatory, RosHydroMet, St. Petersburg, 133 pp. ISBN 978–5–94856–583–5Google Scholar
  31. Gordeev V (2002) Heavy metals in the Russian Arctic Rivers and some of their estuaries: concentrations and fluxes. In: Pacyna JM (ed) Proceedings of the AMAP workshop on sources, emissions and discharges, Kjeller, Norway. NILU OR 3/2002, pp 79–100Google Scholar
  32. Gromov S (2008) The impact of Russian coal-burning power plants in Siberia on atmospheric environment and their possible role in the long range transport of sulphur. Institute of Global Climate and Ecology, Roshydromet and RAS. Presented at the conference on trans-boundary air pollution in Northeast Asia, 17 Dec 2008Google Scholar
  33. Gutman G, Reissell A (eds) (2011) Eurasian arctic land cover and land use in a changing climate, VI. Springer, Amsterdam, 306 ppGoogle Scholar
  34. Häme T (1991) Spectral interpretation of changes in forest using satellite scanner images. Acta For Fenn 222:111Google Scholar
  35. Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys 38:513–543CrossRefGoogle Scholar
  36. Jaffe D, Bertschi I, Jaegle L, Novelli P, Reid JS, Tanimoto H, Vingarzan R, Westphal DL (2004) Long-range transport of Siberian biomass burning emissions and impact on surface ozone in western North America. Geophys Res Lett 31:L16106. doi: 10.1029/2004GL020093 CrossRefGoogle Scholar
  37. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–471CrossRefGoogle Scholar
  38. Kämäri J et al (1998) Acidifying pollutants, Arctic haze, and acidification in the Arctic. In: Wilson SJ, Murray JL, Huntington HP (eds) AMAP assessment report: Arctic pollution issues. Arctic Monitoring and Assessment Programme, Oslo, Norway, pp 621–659Google Scholar
  39. Kasahara A (1980) Influence of orography on the atmospheric general circulation. GARP Publ Ser No 23, pp 7–52Google Scholar
  40. Kaufman YJ, Boucher O, Tanre D, Chin M, Remer LA, Takemura T (2005) Aerosol anthropogenic component estimated from satellite data. Geophys Res Lett 32, Art. No. L17804. doi: 10.1029/2005GL023125
  41. Kharuk VI (1998) O razrabotke GIS tekhnogennikh vozdeistviy na lesa Sibiri. Sibirskii Ekologicheskiy Zhurnal 5:25–30 (in Russian)Google Scholar
  42. Kitaev LM, Radionov VF, Forland E et al (2004) Duration of snow cover in Northern Eurasia in conditions of present climate change. Russ Meteorol Hydrol 11:65–72Google Scholar
  43. Konovalov IB, Beekmann M, Kuznetsova IN, Yurova A, Zvyagintsev AM (2011) Atmospheric impacts of the 2010 Russian wildfires: integrating modelling and measurements of the extreme air pollution episode in the Moscow megacity region. Atmos Chem Phys Discuss 11:12141–12205CrossRefGoogle Scholar
  44. Koutsenogii PK (1997) Aerosol measurements in Siberia. Atmos Res 44:167–173CrossRefGoogle Scholar
  45. Koutsenogii P, Jaenicke R (1994) Number concentration and size distribution of atmospheric aerosol in Siberia. J Aeros Sci 25:377–383CrossRefGoogle Scholar
  46. Kravtsova VI (1999) Izucheniye promyshlennogo vozdeistviya na severnuja rastitelnost’ po kosmicheskim snimkam: trudnosti i nereshennye problemy [Investigation of industrial damage on northern vegetation using satellite images: difficulties and unresolved problems]. Issledovanie Zemli iz Kosmosa 1:112–121 (in Russian)Google Scholar
  47. Lauritzen B, Baklanov A, Mahura A, Mikkelsen T, Sørensen JH (2007) Probabilistic risk assessment for long-range atmospheric transport of radionuclides. J Environ Radioact 96:110–115CrossRefGoogle Scholar
  48. Litinksy P (1996) Assessment of boreal pine forests decline around ore/dressing mill using satellite images. Russian Academy of Sciences, Petrozavodsk (in Russian)Google Scholar
  49. Mahura A, Baklanov A (2003) Assessment of possible airborne impact from nuclear risk sites. Part II: probabilistic analysis of atmospheric transport patterns in Euro-Arctic region. Atmos Chem Phys Discuss 3:5319–5356CrossRefGoogle Scholar
  50. Mahura AG, Baklanov A, Sørensen JH, Parker FL, Novikov V, Brown K, Compton KL (2005) Assessment of potential atmospheric transport and deposition patterns due to Russian Pacific fleet operations. Environ Monit Assess 101:261–287CrossRefGoogle Scholar
  51. Mahura A, Baklanov A, Sørensen JH (2006a) Long-term dispersion modelling. Part II: assessment of atmospheric transport and deposition patterns from nuclear risk sites in Euro-Arctic region. J Comput Technol 10:112–134Google Scholar
  52. Mahura A, Baklanov A, Sørensen JH (2006b) Influence of long-range and long-term continuous and accidental anthropogenic emissions from Eurasian sources on Greenland environment. In: Proceedings of the international conference “The Greenlandic environment: pollution and solutions”, 21–23 Feb 2006, Sisimiut in Greenland, pp 38–44Google Scholar
  53. Mäkela JM, Aalto P, Jokinen V, Pohja T, Nissinen A, Palmroth S, Markkannen T, Seitsonen K, Lihavainen H, Kulmala M (1997) Observations of ultrafine aerosol particle formation and growth in boreal forest. Geophys Res Lett 24:1219–1222CrossRefGoogle Scholar
  54. McGuire A, Apps M, Chapin FS III, Dagraville R, Flannigan M, Kasischke E, Kicklighter D, Kimball J, Kurz W, McRae D, McDonald K, Melilli J, Myneni R, Stocks B, Verbyla D, Zhuang Q (2004) Land cover disturbances and feedbacks to the climate system in Canada and Alaska. In: Gutman G, Janetos A, Justice C, Moran E, Mustard J, Rindfuss R, Skole D, Turner B II, Cochrane M (eds) Land change science. Observing, monitoring and understanding trajectories of change on the earth surface. Kluwer Academic Publishers, Dordrecht, pp 139–163Google Scholar
  55. Mel’nikov YO, Rzhanitsyn PV, Yakovlev AO (1996) Geologo-ekologicheskoye kartirovaniye masshtaba 1:1000000 Noril’skaya rayona list R-45-V.G. RAO Norilsky Nikel, Noril’skGoogle Scholar
  56. National estimate for the development of the Russian Federation on the way to gradual development (2002) Russian Ministry of Economy Development, Moscow, 46 ppGoogle Scholar
  57. Pacyna JM, Ottar B, Tomza U, Maenhaut W (1985) Long-range transport of trace elements to Ny-Alesund, Spitsbergen. Atmos Environ 19(6):857–864CrossRefGoogle Scholar
  58. Pankratova NV, Elansky NF, Belikov IB, Lavrova ОV, Skorokhod АI, Shumcky RА (2011) Ozone and nitrogen oxides in the surface air over Northern Eurasia from the observations in TROICA experiments. Izv Atmos Ocean Phys 17(3):343–358Google Scholar
  59. Penenko VV (1981) Methods of numerical modelling of atmospheric processes. Gidrometeoizdat, Leningrad, 352 pp (in Russian)Google Scholar
  60. Penenko VV (2009) Variation methods of data assimilation and inverse problems for studying the atmosphere, ocean, and environment. Numer Anal Appl 2(4):341–351CrossRefGoogle Scholar
  61. Penenko VV (2010) On a concept of environmental forecasting. Atmos Ocean Opt 23(6):432–438Google Scholar
  62. Penenko VV, Tsvetova EA (1999) Mathematical models for the study of interactions in the system Lake Baikal–atmosphere of the region. J Appl Mech Tech Phys 40(2):308–316CrossRefGoogle Scholar
  63. Penenko V, Tsvetova E (2007) Mathematic models of environmental forecasting. J Appl Mech Tech Phys 48(3):428–436CrossRefGoogle Scholar
  64. Penenko V, Tsvetova E (2008) Orthogonal decomposition methods for inclusion of climatic data into environmental studies. Ecol Model 217:279–291CrossRefGoogle Scholar
  65. Penenko V, Tsvetova E (2009a) Discrete-analytical methods for the implementation of variational principles in environmental applications. J Comput Appl Math 226:319–330CrossRefGoogle Scholar
  66. Penenko VV, Tsvetova EA (2009b) Optimal forecasting of natural processes with uncertainty assessment. J Appl Mech Tech Phys 50(2):300–308CrossRefGoogle Scholar
  67. Penenko V, Baklanov A, Tsvetova E (2002) Methods of sensitivity theory and inverse modelling for estimation of source term. Future Gener Comput Syst 18:661–671CrossRefGoogle Scholar
  68. Persistent toxic substances, Food security and indigenous peoples of the Russian North (2004) Final report. AMAP, Oslo, Norway, 192 ppGoogle Scholar
  69. Pitblado JR, Amiro BD (1982) Landsat mapping of the industrially disturbed vegetation communities of Sudbury, Canada. Can J Remote Sens 8:16–29Google Scholar
  70. Rahn KA, Lowenthal DH (1984) Elemental tracers of distant regional pollution aerosols. Science 223:132–139CrossRefGoogle Scholar
  71. Rees WG, Rigina O (2003) Methodologies for remote sensing of the environmental impacts of industrial activity in the Arctic and Sub-arctic. In: Rasmussen RO, Koroleva NE (eds) Social and environmental impacts in the North. Kluwer, Dordrecht, pp 67–88Google Scholar
  72. Review of environmental state and pollution in Russian Federation in 2006 (2007) Hydrometeoizdat, St.-Petersburg, 162 pp (in Russian)Google Scholar
  73. Rovinskii FYa, Gromov SA, Burtseva LV et al (1994) Heavy metals: long-range transport in the atmosphere and their deposition. Russ Meteorol Hydrol 1994(10):5–14Google Scholar
  74. Shvidenko A, Goldhammer J (2001) Fire situation in Russia. Int Fire News 23:49–65Google Scholar
  75. Skorokhod A, Verkhovets S (2006) Study of reactive atmospheric constituents and of ecosystem parameters in the area of Zotino tall tower (Central Siberia). In: Proceedings of international workshop ISTC “Baikal-2006”, 15–19 Aug 2006, Irkutsk, Russia. Publishing house “V-Spectr”, Tomsk, pp 79–83Google Scholar
  76. Sofiev M, Vankevich R, Lotjonen M, Prank M, Petukhov V, Ermakova T, Koskinen J, Kukkonen J (2009) An operational system for the assimilation of satellite information on wild-land fires for the needs of air quality modelling and forecasting. Atmos Chem Phys 9:6833–6847. http://www.atmos-chem-phys.net/9/6833/2009/acp-9–6833–2009.html
  77. Sofiev M, Prank M, Baklanov A (eds) (2011) Influence of regional scale emissions on megacity air quality. Deliverable D5.5, MEGAPOLI scientific report 11–12, MEGAPOLI-38-REP-2011–06, 28p, ISBN: 978–87–92731–16–6. http://megapoli.dmi.dk/publ/MEGAPOLI_sr11–12.pdf
  78. Sokolik IN, Curry J, Radionov V (2011) Interactions of Arctic aerosols with land-cover and land-use changes in Northern Eurasia and their role in the Arctic climate system. In: Gutman G, Reissell A (eds) Eurasian Arctic land cover and land use in a changing climate, VI. Springer, Amsterdam, pp 237–268, 306 ppGoogle Scholar
  79. Sørensen JH, Baklanov A, Hoe S (2007) The Danish emergency response model of the atmosphere. J Environ Radioact 96:122–129CrossRefGoogle Scholar
  80. Tarasova OA, Brenninkmeijer CAM, Assonov SS, Elansky NF, Röckmann T, Sofiev MA (2007) Atmospheric CO along the trans-Siberian railroad and river Ob: source identification using isotope analysis. J Atmos Chem 57:135–152CrossRefGoogle Scholar
  81. Tarasova OA, Senik IA, Sosonkin MG, Cui J, Staehelin J, Prevot ASH (2009a) Surface ozone at the Caucasian site Kislovodsk High Mountain Station and the Swiss Alpine site Jungfraujoch: data analysis and trends (1990–2006). Atmos Chem Phys 9(12):4157–4175CrossRefGoogle Scholar
  82. Tarasova OA, Houweling S, Elansky N, Brenninkmeijer CAM (2009b) Application of stable isotope analysis for improved understanding of the methane budget: comparison of TROICA measurements with TM3 model simulations. J Atmos Chem 63:49–71CrossRefGoogle Scholar
  83. Timkovsky I, Elansky NF, Skorokhod AI, Shumskiy RA (2010) Studying of biogenic volatile organic compounds in the atmosphere over Russia. IZV Atmos Ocean Phys 46:319–327CrossRefGoogle Scholar
  84. Timofeeva AA, Latysheva IV, Potemkin VL (2008) Dynamics of lightning activity and its influence on ozone variations in Baikal region. Proc IRGTU 2(34):24–27Google Scholar
  85. Toutoubalina OV, Rees WG (1999) Remote sensing of industrial impact on Arctic vegetation around Noril’sk, Northern Siberia: preliminary results. Int J Remote Sens 20:2979–2990CrossRefGoogle Scholar
  86. Toutubalina OV, Rees WG (2001) Vegetation degradation in a permafrost region as seen from space: Noril’sk, 1961–1999. Cold Reg Sci Technol 32:191–203CrossRefGoogle Scholar
  87. Turnbull JC, Miller JB, Lehman SJ, Hurst D, Tans PP, Southon J, Montzka S, Elkins J, Mondeel DJ, Romashkin PA, Elansky N, Skorokhod A (2009) Spatial distribution of ∆14CO2 across Eurasia: measurements from the TROICA-8 expedition. Atmos Chem Phys 9:175–187CrossRefGoogle Scholar
  88. Vartiainen E, Kulmala M, Ehn M, Hirsikko A, Junninen H, Petäjä T, Sogacheva L, Kuokka S, Hillamo R, Skorokhod A, Belikov I, Elansky N, Kerminen V-M (2007) Ion and particle number concentrations and size distributions along the Trans-Siberian railroad. Boreal Environ Res 12:375–396Google Scholar
  89. Vinogradova AA (2000) Anthropogenic pollutants in the Russian Arctic atmosphere: sources and sinks in spring and summer. Atmos Environ 34(29–30):5151–5160CrossRefGoogle Scholar
  90. Vinogradova AA, Maksimenkov LO, Pogarskii FA (2008a) Atmospheric transport of anthropogenic heavy metals from the Kola Peninsula to the surfaces of the White and Barents seas. Izv Atmos Ocean Phys 44(6):753–762 (Engl. Transl)CrossRefGoogle Scholar
  91. Vinogradova AA, Maksimenkov LO, Pogarsky FA (2008b) The influence of Norilsk and Ural industry on the environment of different Siberian regions. Atmos Ocean Opt 21(6):415–420 (Engl. Transl)Google Scholar
  92. Vivchar AV, Moiseenko KB, Shumskii RA, Skorokhod AI (2009) Identifying anthropogenic sources of nitrogen oxide emissions from calculations of lagrangian trajectories and the observational data from a tall tower in Siberia during the spring–summer period of 2007. Izv Atmos Ocean Phys 45:325–336CrossRefGoogle Scholar
  93. Vivchar AV, Moiseenko KB, Pankratova NV (2010) Estimates of carbon monoxide emissions from wildfires in Northern Eurasia for Air quality assessment and climate modeling. Izv Atmos Ocean Phys 46:281–293CrossRefGoogle Scholar
  94. Vlasova TM, Kovalev NI, Filipchuk AN (1990) Effects of point source atmospheric pollution on boreal forest vegetation of Northern Siberia. In: Weller G, Wilson CL, Severin BAB (eds) International conference on the role of the polar regions in global change. University of Alaska- Fairbanks, Fairbanks, pp 423–428Google Scholar
  95. Warner-Merl NK (1998) Air pollution in Siberia: a volume and risk-weighted analysis of a Siberian pollution database. IIASA Interim Report IR-98–059/OctoberGoogle Scholar
  96. WMO (2007) WMO global atmosphere watch strategic plan: 2008–2015. GAW report 172, 104 ppGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alexander A. Baklanov
    • 1
  • Vladimir V. Penenko
    • 2
  • Alexander G. Mahura
    • 1
  • Anna A. Vinogradova
    • 3
  • Nikolai F. Elansky
    • 3
  • Elena A. Tsvetova
    • 2
  • Olga Yu. Rigina
    • 4
  • Leonid O. Maksimenkov
    • 3
  • Roman B. Nuterman
    • 1
  • Fedor A. Pogarskii
    • 3
  • Ashraf Zakey
    • 1
  1. 1.Danish Meteorological InstituteCopenhagenKingdom of Denmark
  2. 2.Institute of Computational Mathematics and Mathematical Geophysics of Siberian Branch of Russian Academy of SciencesNovosibirskRussia
  3. 3.A.M. Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  4. 4.Institute of the Northern Ecology Problems (INEP), Kola Scientific Center of Russian Academy of SciencesApatityRussia

Personalised recommendations