Introduction: Regional Features of Siberia

  • Pavel Ya. Groisman
  • Garik Gutman
  • Anatoly Z. Shvidenko
  • Kathleen M. Bergen
  • Alexander A. Baklanov
  • Paul W. StackhouseJr.
Part of the Springer Environmental Science and Engineering book series (SPRINGERENVIRON)


In this introduction chapter, we describe geographical, climatic, environmental, and demographic characteristics of Siberia and outline major problems dealt with in regional studies of this vast region including those important for the Global Earth System. The science questions, which are put in this chapter, are further addressed in detail throughout the book.


Arctic Ocean Southern Taiga Ural Mountain Hydroelectric Power Station Siberian Crane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Achard F, Eva HD, Mollicone D, Beuchle R (2008) The effect of climate anomalies and human ignition factor on wildfires in Russian boreal forests. Philos Trans R Soc B Biol Sci 363(1501):2331–2339CrossRefGoogle Scholar
  2. ACIA (2005) Arctic climate impact assessment scientific report. Cambridge University Press, New York, 1042 ppGoogle Scholar
  3. Antipov AN, Korytny LM, Plyusnin VM (2006) Siberia and its geographical research. In: Antipov AN (ed) Geography of Siberia. Research India Publications, Delhi, pp 3–36Google Scholar
  4. Balzter H (ed) (2010) Environmental change in Siberia. Springer, Dordrecht/Heidelberg/London/New York. doi:10.1007/978–90–481–8641–9, 282 ppGoogle Scholar
  5. Bergen KM, Conard SG, Houghton RA, Kasischke ES, Kharuk VI, Krankina ON, Ranson KJ, Shugart HH, Sukinin AI, Treyfeld RF (2003) NASA and Russian scientists observe land-cover and land-use change and carbon in Russian forests. J For 101(4):34–41Google Scholar
  6. Bergen KM, Zhao T, Kharuk V, Blam Y, Brown DG, Peterson LK et al (2008) Changing regimes: forested land cover dynamics in central Siberia 1974 to 2001. Photogramm Eng Remote Sens 74:787–798Google Scholar
  7. Conard SG, Ivanova GA (1997) Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia. Clim Chang 1(2):197–211Google Scholar
  8. Dinerstein E (1994) An emergency strategy to rescue Russia’s biological diversity. Conserv Biol 8(4):934–942CrossRefGoogle Scholar
  9. Europa Publications (2010) Russian Federation. In: Eastern Europe, Russia and Central Asia. Europa Publications Limited, London, pp 352–354Google Scholar
  10. Fomchenkov VF, Sdobnova VV, Danilov NK, Danilova SV, Kurdina GV, Beljakova TF (2003) Forest fund of Russia (Data of State Forest Account). All-Russia Research Institute of Forestry and Mechanization, Moscow, 640 ppGoogle Scholar
  11. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  12. Gumilev LN (1990) Ethnogenesis and the Earth’s biosphere. Gidrometeoizdat, Moscow, 528 pp (in Russian)Google Scholar
  13. Gupta SK, Stackhouse PW Jr, Cox SJ, Mikovitz JC, Zhang T (2006) 22-year surface radiation budget data set. GEWEX News 16(4):12–13Google Scholar
  14. Hytteborn H, Maslov AA, Nazimova DI, Rysin LP (2005) Boreal forests of Eurasia. In: Anderssen F (ed) Ecosystems of the World: coniferous forests. Elsevier, Amsterdam, pp 23–99Google Scholar
  15. IPCC (2007) Climate change 2007: working group I report “The Physical Science Basis”, contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, 2007. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds). Cambridge University Press, Cambridge/New YorkGoogle Scholar
  16. Kaliagina LV (2009) Economic regulation of ecological land-use in Krasnoyarsk kray. In: Vaganov E (ed) Resource economics, environmental economics and climate change – 2009. Siberian Federal University, Krasnoyarsk, pp 325–340Google Scholar
  17. Kaplin PA, Selivanov AO (1995) The flood that was, that is and that will be. Science Russ 2:16–23Google Scholar
  18. Kharuk VI, Ranson KJ, Fedotova EV (2007) Spatial pattern of Siberian silkmoth outbreak and taiga mortality. Scand J For Res 22(6):531–536CrossRefGoogle Scholar
  19. Kharuk VI, Ranson KJ, Dvinskaya ML (2010) Wildfire dynamics in Mid-Siberian larch dominated forests. In: Balzter H (ed) Environmental change in Siberia. Springer, London, pp 83–100CrossRefGoogle Scholar
  20. Korovin GN (1996) Analysis of the distribution of forest fires in Russia. In: Goldammer JG, Furyaev VV (eds) Fire in ecosystems of Boreal Eurasia. Kluwer, Boston, pp 112–128Google Scholar
  21. Korytny LM (2009) Actual tasks of geographical resource management. In: Vaganov E (ed) Resource economics, environmental economics and climate change – 2009. Siberian Federal University, Krasnoyarsk, pp 359–366Google Scholar
  22. Krankina ON, Dixon RK (1992) Forest management in Russia – challenges and opportunities in the era of Perestroika. J For 90(6):29–34Google Scholar
  23. Krankina ON, Sun G, Shugart HH, Kasischke E, Kharuk VI, Bergen KM, Masek JG, Cohen WB, Oetter DR, Duane MV (2005) Northern Eurasia: remote sensing of boreal forest in selected regions. In: Gutman G, Janetos AC, Justice CO, Moran EF, Mustard JF, Rindfuss RR, Skole D, Turner BL, Cochrane MA (eds) Land change science: observing, monitoring, and understanding trajectories of change on the earth’s surface. Kluwer Academic Publishers, Dordrecht, pp 123–138Google Scholar
  24. Kryukov VA, Tokarev AN (2010) Evolution of oil resource management in Russia. J Sib Fed Univ Hum Soc Sci 6(3):864–890Google Scholar
  25. Kuznetsova LP (1978) Water vapor migration over the USSR territory. Nauka, Moscow, 92 pp (in Russian)Google Scholar
  26. Lamb HH (1988) Weather. Climate and Human Affairs, Routledge/London, 438 ppGoogle Scholar
  27. Lydolph PE (1977) Climate of the Soviet Union. Elsevier, Amsterdam/Oxford/New York, 443 ppGoogle Scholar
  28. McGuire AD, Chapin RS III, Wirth C, Apps M, Bhatti J, Callaghan T, Christiansen TR, Clein JS, Fukuda M, Onuchin A, Shvidenko A, Vaganov E (2006) Responses of high latitude ecosystems to global change: Potential consequences for the climate system. In: Canadell JG, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world. Springer, Berlin/Heidelberg/New York, pp 297–310, Chapter 24Google Scholar
  29. Milne E, Aspinall RJ, Veldkamp TA (2009) Integrated modelling of natural and social systems in land change science. Landsc Ecol 24:1145–1147CrossRefGoogle Scholar
  30. NEESPI 2004: The Northern Eurasia Earth Science Partnership Initiative (NEESPI) executive overview, NEESPI Science Plan Development Team, 20 pp. Available at
  31. Oldfield JD (2006) Russian nature: exploring the environmental consequences of societal change. Ashgate, BurlingtonGoogle Scholar
  32. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi P, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala S, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D, Wayson C (2011) A large and persistent carbon sink in the world forests. Science 333:988–993. doi:10.1126/science.1201609CrossRefGoogle Scholar
  33. Pavlov AV (1984) Energy exchange in the landscape sphere of the Earth. Nauka, Novosibrsk, 256 ppGoogle Scholar
  34. Pirazzoli PA (1996) Sea-level changes: the last 20,000 years. Wiley, Chichester, 212 ppGoogle Scholar
  35. Quegan S, Beer C, Shvidenko A, McCallum I, Handoh IC, Peylin P, Rödenbeck C, Lucht W, Nilsson S, Schmullius C (2011) Estimating the carbon balance of central Siberia using a landscape-ecosystem approach, atmospheric inversion and dynamic global vegetation models. Glob Chang Biol 17:351–365CrossRefGoogle Scholar
  36. Schepaschenko D, McCallum I, Shvidenko A, Fritz S, Kraxner F, Obersteiner M (2010) A new hybrid land cover dataset for Russia: a methodology for integrating statistics, remote sensing and in-situ information. J Land Use Sci. doi: 10.1080/1747423X.2010.511681 (Published online 22 Dec 2010)
  37. Schulze ED, Wirth C, Mollicone D, Ziegler W (2005) Succession after stand replacing disturbances by fire, wind throw, and insects in the dark taiga of Central Siberia. Oecologia 146(1):77–88CrossRefGoogle Scholar
  38. Selivanov AO (2000) Nature, history, culture: environmental aspects of ethnic cultures of the world. Moscow, GEOS, 324 pp (in Russian)Google Scholar
  39. Shahgedanova M (2003) The physical geography of Northern Eurasia. Oxford University Press, Oxford, 571 ppGoogle Scholar
  40. Shver TsA (1976) Atmospheric precipitation over the USSR territory (in Russian). Gidrometeoizdat, Leningrad, 302 ppGoogle Scholar
  41. Shvidenko A (2009) Terrestrial ecosystems of Northern Asia, global change and post Kyoto developments. In: Vaganov EA (ed) Resource economics, environmental economics and climate change-2009, conference proceedings, Krasnoyarsk, 1–7 July 2009, 667–678Google Scholar
  42. Shvidenko A, Schepaschenko D, Vaganov EA, Sukhinin A, Maksyutov SS, McCallum I, Lakida I (2011) Impact of vegetation fires in Russia on ecosystems and global carbon budget. Proceedings of the Russian Academy of Sciences (Doklady Earth Sciences) 441(Part 2):1678–1682Google Scholar
  43. Sibgatulin VG, Simonov KV, Peretokin SA et al (2009) Estimates of geodynamics for urbanized areas. Montane Inform – Analyt Bull 18(12):51–55 (in Russian)Google Scholar
  44. Soja AJ, Cofer WR III, Shugart HH, Sukhinin AI, Stackhouse PW Jr, McRae DJ, Conard SG (2004) Estimating fire emissions and disparities in boreal Siberia (1998 through 2002). J Geophys Res 109:D14S06. doi: 10.1029/2004JD004570 CrossRefGoogle Scholar
  45. Soja AJ, Tchebakova NM, French NHF, Flannigan MD, Shugart HH, Stocks BJ, Sukhinin AI, Parfenova EI, Chapin Iii FS, Stackhouse PW Jr (2007) Climate-induced boreal forest change: predictions versus current observations. Glob Planet Chang 56:274–296CrossRefGoogle Scholar
  46. The Global Carbon Project (2010) GEO carbon strategy. Document is available at:
  47. Van der Werf GF, Randerson JT, Giglio L, Collatz GJ, Kasibhalts PS, Arellano Jt AF (2006) Interannual variability of global biomass burning emissions from 1997 to 2004. Atmos Chem Phys Discuss 6:3175–3226CrossRefGoogle Scholar
  48. Vörösmarty CJ, Fekete BM, Meybeck M, Lammers RB (2000) Global system of rivers: its role in organizing continental land mass and defining land-to ocean linkages. Global Biogeochem Cycles 14:599–621CrossRefGoogle Scholar
  49. Vygodskaya NN, Groisman PY, Tchebakova NM, Kurbatova JA, Panfyorov O, Parfenova EI, Sogachev AF (2007) Ecosystems and climate interactions in the boreal zone of northern Eurasia. Environ Res Lett 2. doi: 10.1088/1748-9326/2/4/045033
  50. Walter H, Breckle SW (2002) Walter’s vegetation of the earth: the ecological systems of the geo-biosphere, 4th edn. Springer, Berlin, 527 ppGoogle Scholar
  51. Wigley TML, Ingram MJ, Farmer J (eds) (1981) Climate and history. Cambridge University Press, Cambridge, 456 ppGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Pavel Ya. Groisman
    • 1
    • 2
  • Garik Gutman
    • 3
  • Anatoly Z. Shvidenko
    • 4
    • 5
  • Kathleen M. Bergen
    • 6
  • Alexander A. Baklanov
    • 7
  • Paul W. StackhouseJr.
    • 8
  1. 1.NOAA National Climatic Data CenterAshevilleUSA
  2. 2.State Hydrological InstituteSt. PetersburgRussia
  3. 3.The NASA Land-Cover/Land-Use Change ProgramNASA HeadquartersWashingtonUSA
  4. 4.Forestry ProgramInternational Institute for Applied Systems AnalysisLaxenburgAustria
  5. 5.Forestry Institute, Siberian BranchRussian Academy of ScienceKrasnoyarskRussia
  6. 6.School of Natural Resources and EnvironmentUniversity of MichiganAnn ArborUSA
  7. 7.Danish Meteorological InstituteCopenhagenDenmark
  8. 8.NASA Langley Research CenterHamptonUSA

Personalised recommendations