Long-Life Overlays by Use of Highly Modified Bituminous Mixtures

  • D. Simard
  • François Olard
Part of the RILEM Bookseries book series (RILEM, volume 4)


Polymer modified asphalt mixtures have usually been used in wearing courses in order to improve both crack growth resistance and rutting performance where temperatures, vertical stresses and shear strain levels are more severe. Nonetheless, the need for either thinner yet high-performing wearing courses or ever-increasing durability provides the motivation for using higher polymer contents in the wearing course of bituminous pavements.

Therefore, instead of the conventional use of 2-3% styrene-butadiene-styrene (SBS) in polymer modified binders (PMB’s), the resort to higher SBS contents in the range 6-7% allows for a phase inversion in the PMB microstructure: the swollen polymer becomes the continuous phase in which asphaltene nodules are dispersed. This significant change in PMB microstructure brings about significantly higher performances. Besides, some other benefits may be related to the possible layer thickness reduction: less natural materials (aggregate, bitumen) used, less resources required for construction (man-hours, emissions during transport and laying) and, overall, cost saving.

Microstructure, both empirical and rheological characteristics were investigated in laboratory for two different PMB’s with very high SBS content (referred to as Biprene® or Orthoprene®). In addition, in-situ testing was carried out: a brief follow-up of the highly trafficked Millau Viaduct surfacing (constructed in France in 2004) where this type of PMB was used, is in particular proposed.

The paper illustrates that the proposed innovative highly modified bituminous mixes may be from now on potentially considered as a relevant solution for sustainable long-life and high-performance overlays, needing only rare surface maintenance.


Asphalt Concrete Styrene Butadiene Styrene Modify Bitumen Styrene Butadiene Styrene Bituminous Binder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brion, Y., Brule, B.: Etude des mélanges bitumes-polymères. Composition, structure et propriétés. Bulletin LCPC, Paris, p. 123, rapport PC-6 (1986)Google Scholar
  2. 2.
    Bouldin, M.G., Collins, J.H., Berker, A.: Rheology and microstructure of polymer / asphalt blends. Rubber Chemistry and Technology 64, 577 (1990)CrossRefGoogle Scholar
  3. 3.
    AIPCR Association mondiale de la route - Used of modified bituminous binders, special bitumens and bitumens with additives in road pavements (1999)Google Scholar
  4. 4.
    Adedeji, A., Grunefelder, T., Bates, F.S., Macosko, C.W.: Asphalt modified by SBS triblock copolymer: structure and properties. Polymer Engineering and Sci. (12), 1707–1733 (1996)CrossRefGoogle Scholar
  5. 5.
    Kraus, G.: Modification of asphalt by block polymers of butadiene and styrene. Rubber Chemistry and Technology 55, 1389–1402 (1982)CrossRefGoogle Scholar
  6. 6.
    Hernandez, G., Medina, E., Sanchez, R., Mendoza, A.: Thermomechanical and rheological asphalt modification using styrene butadiene triblock copolymers with different microstructure. Energy & Fuels 20, 2623–2626 (2006)CrossRefGoogle Scholar
  7. 7.
    Société Anonyme d’Application des Dérivés de l’Asphalte SAADA. Composition de vulcanisation, procédé pour sa préparation, et son utilisation dans les liants routiers. Trinh Cu Cuong et Million Denis. EP 0 299 820 (June 21, 1988)Google Scholar
  8. 8.
    Planche, J.-P.: Special features of polymer modified binders. In: Petersen Asphalt Research Conference Symposium on Additives (2004),
  9. 9.
    Petersen, J.C.: A dual sequential mechanism for the oxidation of petroleum asphalts. Petroleum Science and Technology 16 (9-10), 1023 (1998)CrossRefGoogle Scholar
  10. 10.
    Dressen, S., Ponsardin, M., Planche, J., et al.: Durability study: field aging of conventional and polymer modified binders. TRB, Annual Meeting (2010)Google Scholar
  11. 11.
    Mouillet, V., Lamontagne, J., Durrieur, F., Planche, J.-P., Lapalu, L.: Infrared microscopy investigation of oxidation and phase evolution in asphalt modified with polymers. Fuel 87, 1270 (2008)CrossRefGoogle Scholar
  12. 12.
    Gallet, T., Dressen, S., Dumont, A.-G., Pittet, M.: Evolution à long terme de la structure chimique d’un bitume modifié SBS. RGRA (890) (December 2010, January 2011)Google Scholar
  13. 13.
    Gaudefroy, V., Olard, F., Beduneau, E., De La Roche, C.: Influence of the low-emission asphalt LEA® composition on total organic compounds emissions using the factorial experimental design approach. In: Enviroad Congress (2009)Google Scholar
  14. 14.
    NF EN 1426. Détermination de la pénétrabilité à l’aiguille (Septembre 2009)Google Scholar
  15. 15.
    NF EN 1427. Détermination de la température de ramollissement – Méthode Bille et Anneau. Février (June 9, 2011)Google Scholar
  16. 16.
    NF EN 13398. Détermination du retour élastique des bitumes modifiés (Aout 2010) (in French)Google Scholar
  17. 17.
    MOPL 102. Notice d’utilisation d’un viscosimètre Brookfield. Eiffage Travaux Publics (Mars 2006) (in french)Google Scholar
  18. 18.
    NF EN 13399. Détermination de la stabilité au stockage des bitumes modifiés (Aout 2010)Google Scholar
  19. 19.
    NF EN 12593. Détermination du point de fragilité Fraass (Mars 2010)Google Scholar
  20. 20.
    Héritier, B., Olard, F., Saubot, M., Krafft, S.: Bituminous wearing course on steel deck – Orthochape®: outstanding technical solution for the Millau Viaduct surfacing. RGRA (2004)Google Scholar
  21. 21.
    Héritier, B., Olard, F., Loup, F., Krafft, S.: Design of a specific bituminous surfacing for the world’s highest orthotropic steel deck bridge. Transportation Research Record: Journal of the Transportation Research Board, No. 1929Google Scholar
  22. 22.
    Olard, F., Héritier, B., Loup, F., Krafft, S.: New French standard test method for the design of surfacing on steel deck bridges: case study of the Millau Viaduct. Road Materials and Pavements Design 6 (2005)Google Scholar
  23. 23.
    Méhue, P.: Platelages métalliques et revêtements de chaussées. Bull. de liaison des Laboratoires des Ponts et Chaussées (111) (1981)Google Scholar
  24. 24.
    Pouget, S., Sauzéat, C., Di Benedetto, H., Olard, F.: Modeling of viscous bituminous wearing course materials on orthotropic steel deck. Materials and Structures (2011)Google Scholar
  25. 25.
    Huurman, M., Medani, T.O., Scarpas, A., Kasbergen, C.: Development of a 3D-FEM for Surfacings on Steel Deck Bridges. In: International Conference on Computational & Experimental Engineering (2003)Google Scholar
  26. 26.
    Pouget, S.: Influence des propriétés élastiques ou viscoélastiques des revêtements sur le comportement des ponts à dalle orthotrope PhD ENTPE-INSA, p. 254 (2011)Google Scholar

Copyright information

© RILEM 2012 2012

Authors and Affiliations

  1. 1.Central LaboratoryEiffage Travaux PublicsCorbasFrance
  2. 2.Research and Development DivisionEiffage Travaux PublicsCorbasFrance

Personalised recommendations