Breeding for Resistance to Bacterial Wilt in Ryegrass: Insights into the Genetic Control of Plant Resistance and Pathogen Virulence

  • F. Wichmann
  • F. Widmer
  • F.-J. Vorhölter
  • B. Boller
  • R. Kölliker
Conference paper

Abstract

Bacterial wilt caused by Xanthomonas translucens pv. graminis (Xtg) is a severe disease of forage grasses leading to drastic losses in pure and mixed stands. Italian ryegrass (Lolium multiflorum) is particularly susceptible to bacterial wilt and breeding for resistance is the only practicable means of disease control. A detailed understanding of the genetic control of this complex host-pathogen interaction is indispensible for the further development of L. multiflorum cultivars with increased resistance to bacterial wilt and to refine and optimise breeding procedures. While several recent studies have revealed novel insights on plant resistance, little is known about the processes involved in host-colonization and disease development. Therefore, factors influencing pathogen virulence were investigated in Xtg using conserved primer approaches and whole genome sequencing. Knock-out mutation of components of the type three secretion system (T3SS), a major virulence factor in many Xanthomonas spp., showed that the T3SS is important for Xtg virulence but not for in planta multiplication. Analysis of the draft genome sequences revealed a substantial number of effectors apparently characteristic for Xtg. In conlusion, our investigations on the Xtg x L. multiflorum interactions provide fundamental insights for the development of innovative resistance breeding approaches.

Keywords

Quantitative Trait Locus Simple Sequence Repeat Marker Insertion Sequence Major Quantitative Trait Locus Bacterial Wilt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by the Swiss National Science Foundation (Grant No. 31003A–112582). We thank C. Conradin for her work on ΔhrpG mutants and S. Reinhard, S. Kuhnen and P. Streckeisen for excellent technical support.

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Arnold DL, Pitman A, Jackson RW (2003) Pathogenicity and other genomic islands in plant pathogenic bacteria. Mol Plant Pathol 4:407–420PubMedCrossRefGoogle Scholar
  3. Boller B, Peter-Schmid M, Tresch E, Tanner P, Schubiger F (2009) Ecotypes of Italian ryegrass from Swiss permanent grassland outperform current recommended cultivars. Euphytica 170:53–65CrossRefGoogle Scholar
  4. Büttner D, Bonas U (2010) Regulation and secretion of Xanthomonas virulence factors. Fems Microbiol Rev 34:107–133PubMedCrossRefGoogle Scholar
  5. Carrillo MGC, Goodwin PH, Leach JE, Leung H, Vera Cruz CM (2009) Phylogenomic relationships of rice oxalate oxidases to the cupin superfamily and their association with disease resistance QTL. Rice 2:67–79CrossRefGoogle Scholar
  6. Cornelis GR (2006) The type III secretion injectisome. Nat Rev Microbiol 4:811–825PubMedCrossRefGoogle Scholar
  7. Dracatos PM, Cogan NOI, Keane PJ, Smith KF, Forster JW (2010) Biology and genetics of crown rust disease in ryegrasses. Crop Sci 50:1605–1624CrossRefGoogle Scholar
  8. Dracatos PM, Dumsday JL, Olle RS, Cogan NOI, Dobrowolski MP, Fujimori M, Roderick H, Stewart AV, Smith KF, Forster JW (2006) Development and characterization of EST-SSR markers for the crown rust pathogen of ryegrass (Puccinia coronata f.sp. lolii). Genome 49:572–583PubMedCrossRefGoogle Scholar
  9. Egli T, Schmidt D (1982) Pathogenic variation among the causal agents of baterial wilt of forage grasses. Phytopathol Z 104:138–150CrossRefGoogle Scholar
  10. Horton RM (1995) PCR-mediated recombination and mutagenesis. Mol Biotechnol 3:93–99PubMedCrossRefGoogle Scholar
  11. Kaniga K, Delor I, Cornelis GR (1991) A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene 109:137–141PubMedCrossRefGoogle Scholar
  12. Kölliker R, Kraehenbuehl R, Boller B, Widmer F (2006) Genetic diversity and pathogenicity of the grass pathogen Xanthomonas translucens pv. graminis. Syst Appl Microbiol 29:109–119PubMedCrossRefGoogle Scholar
  13. Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057PubMedCrossRefGoogle Scholar
  14. Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A (2003) GenDB—an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 31:2187–2195PubMedCrossRefGoogle Scholar
  15. Mutlu N, Miklas P, Coyne D (2006) Resistance gene analog polymorphism (rgap) markers co-localize with disease resistance genes and qtl in common bean. Mol Breeding 17:127CrossRefGoogle Scholar
  16. Parkinson N, Cowie C, Heeney J, Stead D (2009) Phylogenetic structure of Xanthomonas determined by comparison of gyrB sequences. Int J Syst Evol Microbiol 59:264–274CrossRefGoogle Scholar
  17. Ramalingam J, Cruz CMV, Kukreja K, Chittoor JM, Wu JL, Lee SW, Baraoidan M, George ML, Cohen MB, Hulbert SH, Leach JE, Leung H (2003) Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. Mol Plant Microbe Interact 16:14–24CrossRefGoogle Scholar
  18. Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billault A, Brottier P, Camus JC, Cattolico L, Chandler M, Choisne N, Claudel-Renard C, Cunnac S, Demange N, Gaspin C, Lavie M, Moisan A, Robert C, Saurin W, Schiex T, Siguier P, Thebault P, Whalen M, Wincker P, Levy M, Weissenbach J, Boucher CA (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497–502PubMedCrossRefGoogle Scholar
  19. Scheideler M, Schlaich NL, Fellenberg K, Beissbarth T, Hauser NC, Vingron M, Slusarenko AJ, Hoheisel JD (2002) Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA arrays. J Biol Chem 277:10555–10561.PubMedCrossRefGoogle Scholar
  20. Schmidt D, Nuesch B (1980) Resistance to bacterial wilt (Xanthomonas graminis) increases yield and persistency of Lolium multiflorum. EPPO B 10:335–339CrossRefGoogle Scholar
  21. Studer B, Boller B, Herrmann D, Bauer E, Posselt UK, Widmer F, Kölliker R (2006) Genetic mapping reveals a single major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 113:661–671PubMedCrossRefGoogle Scholar
  22. Wang HM, Sletten A (1995) Infection biology of bacterial wilt of forage grasses. J Phytopathol 143:141–145CrossRefGoogle Scholar
  23. White F, Potnis N, Jones J, Koebnik R (2009) The type III effectors of Xanthomonas. Mol Plant Pathol 10:749–766PubMedCrossRefGoogle Scholar
  24. White FF, Yang B (2009) Host and pathogen factors controlling the rice-Xanthomonas oryzae interaction. Plant Physiol 150:1677–1686PubMedCrossRefGoogle Scholar
  25. Wichmann F, Asp T, Widmer F, Kölliker R (2011a) Transcriptional responses of Italian ryegrass during interaction with Xanthomonas translucens pv. graminis reveal novel candidate genes for bacterial wilt resistance. Theor Appl Genet 122:567–579CrossRefGoogle Scholar
  26. Wichmann F, Mueller-Hug B, Widmer F, Boller B, Studer B, Kölliker R (2011b) Phenotypic and molecular characterization indicate no major race-specific interactions between Xanthomonas translucens pv. graminis and Lolium multiflorum. Plant Pathol 60:314–324CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • F. Wichmann
    • 1
  • F. Widmer
    • 1
  • F.-J. Vorhölter
    • 2
  • B. Boller
    • 1
  • R. Kölliker
    • 1
  1. 1.Agroscope Reckenholz-Tänikon Research Station ARTZurichSwitzerland
  2. 2.CeBiTec, University of BielefeldBioinformatics FacilityBielefeldGermany

Personalised recommendations