Skip to main content

Patient Specific Computational Modeling in Cardiovascular Mechanics

  • Chapter

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 5))

Abstract

Diseases of the cardiovascular system are leading causes of morbidity and mortality worldwide. Computational modeling of cardiovascular mechanics has contributed to the understanding of cardiovascular disease etiology and risk evaluation. Patient specific finite element models of disease sites such as atherosclerotic plaques and aneurysms have provided important insights into their biomechanics, including identification of the characteristics of vulnerable locations.

Current clinical risk assessment for atherosclerotic plaque disruption is based on the stenosis produced by the lesion; however it has been found that the magnitude of stenosis does not correlate with the plaque’s vulnerability. Likewise evaluation of the likelihood of aneurysm rupture is based mainly on diameter measurements; however this criterion has also been called into question. Plaque and aneurysm rupture are often fatal events and thus improved clinical indicators for them are required. Patient specific finite element models of these disease sites may provide improved indicators of vulnerability based on biomechanical principles. Proposed indicators in the literature include measures of maximal stress and stress/strength ratios, additionally geometric measures such as plaque curvature or vessel asymmetry have also been developed as potential indicators.

In recent years, model complexity has increased from 2D studies to 3D models with multiple components. Current technical challenges which are being addressed in the literature include the estimation of the stress free reference configuration of arteries from the deformed in vivo configuration present in medical images and the inclusion of residual stresses in the arterial wall. Furthermore anisotropic constitutive models with artery specific preferred material directions are being implemented in these complex geometries using stress or strain based fiber remodeling algorithms and geometric systems. This chapter reviews the current state of the art in the area and details the barriers yet to be overcome if patient specific computational modeling is to be used as a clinical tool. These include trade-offs between automation, model complexity, computation time and reproducibility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alastrué V, Garía A, Peña E, Rodríguez JF, Martínez MA, Doblaré M (2010) Numerical framework for patient-specific computational modeling of vascular tissue. Int J Numer Methods Biomed Eng 26(1):35–51

    Article  MATH  Google Scholar 

  • Chen X, Schmitt F (1992) Intrinsic surface properties from surface triangulation. In: ECCV’92 proceedings of the second European conference on computer vision. Springer, Berlin, pp 739–743

    Google Scholar 

  • Creane A, Maher E, Sultan S, Hynes N, Kelly DJ, Lally C (2010) Finite element modeling of diseased carotid bifurcations generated from in vivo computerised tomographic angiography. Comput Biol Med 40(4):419–429

    Article  Google Scholar 

  • Creane A, Maher E, Sultan S, Hynes N, Kelly DJ, Lally C (2011) Prediction of fiber architecture and adaptation in diseased carotid bifurcations. Biomech Model Mechanobiol 10(6):831–843

    Article  Google Scholar 

  • Delfino A, Stergiopulos N, Moore J, Meister JJ (1997) Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J Biomech 30(8):777–786

    Article  Google Scholar 

  • Doyle BJ, Callanan A, Burke PE, Grace PA, Walsh MT, Vorp DA, McGloughlin TM (2009) Vessel asymmetry as an additional diagnostic tool in the assessment of abdominal aortic aneurysms. J Vasc Surg 49(2):443–454

    Article  Google Scholar 

  • Driessen NJB, Wilson W, Bouten CVC, Baaijens FPT (2004) A computational model for collagen fiber remodeling in the arterial wall. J Theor Biol 226(1):53–64

    Article  Google Scholar 

  • Fillinger MF, Marra SP, Raghavan ML, Kennedy FE (2003) Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J Vasc Surg 37(4):724–732

    Article  Google Scholar 

  • Fillinger MF, Raghavan ML, Marra SP, Cronenwett JL, Kennedy FE (2002) In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J Vasc Surg 36(3):589–597

    Article  Google Scholar 

  • Finlay HM, Whittaker P, Canham PB (1998) Collagen organization in the branching region of human brain arteries. Stroke 29(8):1595

    Article  Google Scholar 

  • Flamini V, Kerskens C, Moerman KM, Simms CK, Lally C (2010) Imaging arterial fibers using diffusion tensor imaging—feasibility study and preliminary results. EURASIP J Adv Signal Process 2010:1–14

    Article  Google Scholar 

  • Gao H, Long Q, Kumar Das S, Halls J, Graves M, Gillard JH, Li Z-Y (2011) Study of carotid arterial plaque stress for symptomatic and asymptomatic patients. J Biomech 44(14):2551–2557

    Article  Google Scholar 

  • Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modeling of arterial layers with distributed collagen fiber orientations. J R Soc Interface 3(6):15–35

    Article  Google Scholar 

  • Gee MW, Förster C, Wall WA (2010) A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Int J Numer Methods Biomed Eng 26(1):52–72

    Article  MATH  Google Scholar 

  • Georgakarakos E, Ioannou CV, Kamarianakis Y, Papaharilaou Y, Kostas T, Manousaki E, Katsamouris AN (2010) The role of geometric parameters in the prediction of abdominal aortic aneurysm wall stress. Eur J Vasc Endovasc Surg 39(1):42–48

    Article  Google Scholar 

  • Giannoglou G, Giannakoulas G, Soulis J, Chatzizisis Y, Perdikides T, Melas N, Parcharidis G, Louridas G (2006) Predicting the risk of rupture of abdominal aortic aneurysms by utilizing various geometrical parameters: revisiting the diameter criterion. Angiology 57(4):487–494

    Article  Google Scholar 

  • Golledge J, Greenhalgh RM, Davies AH (2000) The symptomatic carotid plaque. Stroke 31(3):774–781

    Article  Google Scholar 

  • Hameiri E, Shimshoni I (2003) Estimating the principal curvatures and the Darboux frame from real 3-d range data. IEEE Trans Syst Man Cybern, Part B, Cybern 33(4):626–637

    Article  Google Scholar 

  • Hariton I, deBotton G, Gasser TC, Holzapfel GA (2007) Stress-modulated collagen fiber remodeling in a human carotid bifurcation. J Theor Biol 248(3):460–470

    Article  MathSciNet  Google Scholar 

  • Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61(1):1–48

    Article  MathSciNet  MATH  Google Scholar 

  • Huang X, Yang C, Yuan C, Liu F, Canton G, Zheng J, Woodard PK, Sicard GA, Tang D (2009) Patient-specific artery shrinkage and 3D zero-stress state in multi-component 3D FSI models for carotid atherosclerotic plaques based on in vivo MRI data. Mol Cell Biomech 6(2):121

    Google Scholar 

  • Kiousis DE, Gasser TC, Holzapfel GA (2007) A numerical model to study the interaction of vascular stents with human atherosclerotic lesions. Ann Biomed Eng 35(11):1857–1869

    Article  Google Scholar 

  • Leach JR, Rayz VL, Soares B, Wintermark M, Mofrad MRK, Saloner D (2010) Carotid atheroma rupture observed in vivo and FSI-predicted stress distribution based on pre-rupture imaging. Ann Biomed Eng 38(8):2748–2765

    Article  Google Scholar 

  • Li Z-Y, Howarth SPS, Tang T, Graves MJ, U-King-Im J, Trivedi RA, Kirkpatrick PJ, Gillard JH (2007) Structural analysis and magnetic resonance imaging predict plaque vulnerability: a study comparing symptomatic and asymptomatic individuals. J Vasc Surg 45(4):768–775

    Article  Google Scholar 

  • Li ZY, Tang T, U-King-Im J, Graves M, Sutcliffe M, Gillard JH (2008) Assessment of carotid plaque vulnerability using structural and geometrical determinants. Circ J 72(7):1092–1099

    Article  Google Scholar 

  • Lu J, Zhou X, Raghavan ML (2007) Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J Biomech 40(3):693–696

    Article  Google Scholar 

  • Ma B, Harbaugh RE, Raghavan ML (2004) Three-dimensional geometrical characterization of cerebral aneurysms. Ann Biomed Eng 32(2):264–273

    Article  Google Scholar 

  • Maier A, Gee MW, Reeps C, Pongratz J, Eckstein HH, Wall WA (2010) A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann Biomed Eng 38(10):3124–3134

    Article  Google Scholar 

  • Martufi G, Di Martino ES, Amon CH, Muluk SC, Finol EA (2009) Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. J Biomech Eng 131(6):061015

    Article  Google Scholar 

  • Mortier P, Holzapfel GA, Beule M, Loo D, Taeymans Y, Segers P, Verdonck P, Verhegghe B (2009) A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann Biomed Eng 38(1):88–99

    Article  Google Scholar 

  • Naghavi M (2003) From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: part I. Circulation 108(14):1664–1672

    Article  Google Scholar 

  • Ohayon J, Dubreuil O, Tracqui P, Le Floc’h S, Rioufol G, Chalabreysse L, Thivolet F, Pettigrew RI, Finet G (2007) Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: potential impact for evaluating the risk of plaque rupture. Am J Physiol, Heart Circ Physiol 293(3):H1987–H1996

    Article  Google Scholar 

  • Pierce DM, Trobin W, Raya JG, Trattnig S, Bischof H, Glaser C, Holzapfel GA (2010) DT-MRI based computation of collagen fiber deformation in human articular cartilage: a feasibility study. Ann Biomed Eng 38(7):2447–2463

    Article  Google Scholar 

  • Raghavan M, Ma B, Fillinger MF (2006) Non-invasive determination of zero-pressure geometry of arterial aneurysms. Ann Biomed Eng 34(9):1414–1419

    Article  Google Scholar 

  • Rhodin JAG (1980) Architecture of the vessel wall. In: Bohr DF, Somlyo AD, Sparks HV (eds) The cardiovascular system. Handbook of physiology, vol 2. Am Physiol Soc, Bethesda, pp 1–31

    Google Scholar 

  • Rissland P, Alemu Y, Einav S, Ricotta J, Bluestein D (2009) Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model. J Biomech Eng 131(3):031001

    Article  Google Scholar 

  • Rodríguez JF, Martufi G, Doblaré M, Finol EA (2009) The effect of material model formulation in the stress analysis of abdominal aortic aneurysms. Ann Biomed Eng 37(11):2218–2221

    Article  Google Scholar 

  • Rodríguez JF, Ruiz C, Doblaré M, Holzapfel GA (2008) Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J Biomech Eng 130(2):021023

    Article  Google Scholar 

  • Rowe AJ, Finlay HM, Canham PB (2003) Collagen biomechanics in cerebral arteries and bifurcations assessed by polarizing microscopy. J Vasc Res 40(4):406–415

    Article  Google Scholar 

  • Sacks MS, Vorp DA, Raghavan M, Federle MP, Webster MW (1999) In vivo three-dimensional surface geometry of abdominal aortic aneurysms. Ann Biomed Eng 27(4):469–479

    Article  Google Scholar 

  • Sadat U, Teng Z, Young VE, Graves MJ, Gaunt ME, Gillard JH (2011) High-resolution magnetic resonance imaging-based biomechanical stress analysis of carotid atheroma: a comparison of single transient ischaemic attack, recurrent transient ischaemic attacks, non-disabling stroke and asymptomatic patient groups. Eur J Vasc Endovasc Surg 41(1):83–90

    Article  Google Scholar 

  • Sadat U, Teng Z, Young VE, Walsh SR, Li ZY, Graves MJ, Varty K, Gillard JH (2010) Association between biomechanical structural stresses of atherosclerotic carotid plaques and subsequent ischaemic cerebrovascular events—a longitudinal in vivo magnetic resonance imaging-based finite element study. Eur J Vasc Endovasc Surg 40(4):485–491

    Article  Google Scholar 

  • Schaar JA, Muller JE, Falk E, Virmani R, Fuster V, Serruys PW, Colombo A, Stefanadis C, Ward Casscells S, Moreno PR (2004) Terminology for high-risk and vulnerable coronary artery plaques. Eur Heart J 25(12):1077

    Article  Google Scholar 

  • Shum J, DiMartino ES, Goldhammer A, Goldman DH, Acker LC, Patel G, Ng JH, Martufi G, Finol EA (2010a) Semiautomatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms. Med Phys 37(2):638

    Article  Google Scholar 

  • Shum J, Xu A, Chatnuntawech I, Finol EA (2010b) A framework for the automatic generation of surface topologies for abdominal aortic aneurysm models. Ann Biomed Eng 39(1):249–259

    Article  Google Scholar 

  • Tang D, Teng Z, Canton G, Hatsukami TS, Dong L, Huang X, Yuan C (2009) Local critical stress correlates better than global maximum stress with plaque morphological features linked to atherosclerotic plaque vulnerability: an in vivo multi-patient study. Biomed Eng 8(1):15

    Google Scholar 

  • Teng Z, Sadat U, Ji G, Zhu C, Young VE, Graves MJ, Gillard JH (2011) Lumen irregularity dominates the relationship between mechanical stress condition, fibrous-cap thickness, and lumen curvature in carotid atherosclerotic plaque. J Biomech Eng 133(3):034501

    Article  Google Scholar 

  • Teng Z, Sadat U, Li Z, Huang X, Zhu C, Young VE, Graves MJ, Gillard JH (2010) Arterial luminal curvature and fibrous-cap thickness affect critical stress conditions within atherosclerotic plaque: an in vivo MRI-based 2D finite-element study. Ann Biomed Eng 38(10):3096–3101

    Article  Google Scholar 

  • Vande Geest JP, Schmidt DE, Sacks MS, Vorp DA (2008) The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms. Ann Biomed Eng 36(6):921–932

    Article  Google Scholar 

  • Vande Geest JP, Wang DHJ, Wisniewski SR, Makaroun MS, Vorp DA (2006) Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann Biomed Eng 34(7):1098–1106

    Article  Google Scholar 

  • Vorp DA (2007) Biomechanics of abdominal aortic aneurysm. J Biomech 40(9):1887–1902

    Article  Google Scholar 

  • Vorp DA, Raghavan M, Webster MW (1998) Mechanical wall stress in abdominal aortic aneurysm: influence of diameter and asymmetry. J Vasc Surg 27(4):632–639

    Article  Google Scholar 

  • Wu EX, Wu Y, Nicholls JM, Wang J, Liao S, Zhu S, Lau C-P, Tse H-F (2007) MR diffusion tensor imaging study of postinfarct myocardium structural remodeling in a porcine model. Magn Reson Med 58(4):687–695

    Article  Google Scholar 

  • Yang C, Bach RG, Zheng J, Ei Naqa I, Woodard PK, Teng Z, Billiar K, Tang D (2009) In vivo IVUS-based 3-D fluid–structure interaction models with cyclic bending and anisotropic vessel properties for human atherosclerotic coronary plaque mechanical analysis. IEEE Trans Biomed Eng 56(10):2420–2428

    Article  Google Scholar 

  • Zhang S, Crow JA, Yang X, Chen J, Borazjani A, Mullins KB, Chen W, Cooper RC, McLaughlin RM, Liao J (2010) The correlation of 3D DT-MRI fiber disruption with structural and mechanical degeneration in porcine myocardium. Ann Biomed Eng 38(10):3084–3095

    Article  Google Scholar 

Download references

Acknowledgements

This publication has emanated from research conducted with the financial support of Science Foundation Ireland under Research Frontiers Grant 07/RFP/ENMF660 and grant 07/RFP/ENMF660 TIDA Feasibility 10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caitríona Lally .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Creane, A., Kelly, D.J., Lally, C. (2012). Patient Specific Computational Modeling in Cardiovascular Mechanics. In: Calvo Lopez, B., Peña, E. (eds) Patient-Specific Computational Modeling. Lecture Notes in Computational Vision and Biomechanics, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4552-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4552-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4551-3

  • Online ISBN: 978-94-007-4552-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics