Advertisement

Rapid DNA Extraction Protocol for Detection of Alpha-1 Antitrypsin Deficiency from Dried Blood Spots by Real-Time PCR

  • R. Struniawski
  • A. Szpechcinski
  • B. Poplawska
  • M. Skronski
  • J. Chorostowska-Wynimko
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 756)

Abstract

The dried blood spot (DBS) specimens have been successfully employed for the large-scale diagnostics of α1-antitrypsin (AAT) deficiency as an easy to collect and transport alternative to plasma/serum. In the present study we propose a fast, efficient, and cost effective protocol of DNA extraction from dried blood spot (DBS) samples that provides sufficient quantity and quality of DNA and effectively eliminates any natural PCR inhibitors, allowing for successful AAT genotyping by real-time PCR and direct sequencing. DNA extracted from 84 DBS samples from chronic obstructive pulmonary disease patients was genotyped for AAT deficiency variants by real-time PCR. The results of DBS AAT genotyping were validated by serum IEF phenotyping and AAT concentration measurement. The proposed protocol allowed successful DNA extraction from all analyzed DBS samples. Both quantity and quality of DNA were sufficient for further real-time PCR and, if necessary, for genetic sequence analysis. A 100% concordance between AAT DBS genotypes and serum phenotypes in positive detection of two major deficiency S- and Z- alleles was achieved. Both assays, DBS AAT genotyping by real-time PCR and serum AAT phenotyping by IEF, positively identified PI*S and PI*Z allele in 8 out of the 84 (9.5%) and 16 out of 84 (19.0%) patients, respectively. In conclusion, the proposed protocol noticeably reduces the costs and the hand-on-time of DBS samples preparation providing genomic DNA of sufficient quantity and quality for further real-time PCR or genetic sequence analysis. Consequently, it is ideally suited for large-scale AAT deficiency screening programs and should be method of choice.

Keywords

Alpha1-antitrypsin deficiency Dried-blood spot Genotyping Real time PCR Screening 

Notes

Acknowledgments

Supported by National Institute of Tuberculosis and Lung Diseases in Warsaw (project 5/8) and by Ministry of Science and Higher Education, Republic of Poland (grant N404081539).

Conflicts of interest: The authors declare no conflicts of interest in relation to this article.

References

  1. American Thoracic Society/European Respiratory Society Statement. (2003). Standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency. American Journal of Respiratory and Critical Care Medicine, 168, 818–900.CrossRefGoogle Scholar
  2. Blanco, I., de Serres, F. J., Fernandez-Bustillo, E., Lara, B., & Miravitlles, M. (2006). Estimated numbers and prevalence of PI*S and PI*Z alleles of alpha-1 antitrypsin deficiency in European countries. European Respiratory Journal, 27, 77–84.PubMedCrossRefGoogle Scholar
  3. Bornhorst, J. A., Procter, M., Meadows, C., Ashwood, E. R., & Mao, R. (2007). Evaluation of an integrative diagnostic algorithm for the identification of people at risk for alpha-1 antitrypsin deficiency. American Journal of Clinical Pathology, 128, 482–490.PubMedCrossRefGoogle Scholar
  4. Brantly, M. (2006). Efficient and accurate approaches to the laboratory diagnosis of alpha1-antitrypsin deficiency: The promise of early diagnosis and intervention. Clinical Chemistry, 52, 2180–2181.PubMedCrossRefGoogle Scholar
  5. Caggana, M., Conroy, J. M., & Pass, K. A. (1998). Rapid, efficient method for multiplex amplification from filter paper. Human Mutation, 11, 404–409.PubMedCrossRefGoogle Scholar
  6. Chorostowska-Wynimko, J., Nizankowska-Mogilnicka, E., & The Working Group of the Polish Respiratory Society. (2010). Diagnosis and treatment of patients with alpha-1 antitrypsin (alpha-1 AT) deficiency. Pneumonologia i Alergologia Polska, 78, 348–355.PubMedGoogle Scholar
  7. Costa, X., Jardi, R., Rodriguez, F., Miravitlles, M., Cotrina, M., Gonzalez, C., Pascual, C., & Vidal, R. (2000). Simple method for alpha1-antitrypsin deficiency screening by use of dried blood spot specimens. European Respiratory Journal, 15, 1111–1115.PubMedCrossRefGoogle Scholar
  8. DeMeo, D. L., & Silverman, E. K. (2004). Alpha-1 antitrypsin deficiency 2: Genetic aspects of alpha-1 antitrypsin deficiency: Phenotypes and genetic modifiers of emphysema risk. Thorax, 59, 259–264.PubMedCrossRefGoogle Scholar
  9. Ferrarotti, I., Zorzetto, M., Scabini, R., Mazzola, P., Campo, I., & Luisetti, M. A. (2004). Novel method for rapid genotypic identification of alpha-1 antitrypsin variants. Diagnostic Molecular Pathology, 13, 160–163.PubMedCrossRefGoogle Scholar
  10. Ferrarotti, I., Scabini, R., Campo, I., Ottaviani, S., Zorzetto, M., Gorrini, M., & Luisetti, M. (2007). Laboratory diagnosis of alpha-1 antitrypsin deficiency. Translational Research, 150, 267–274.PubMedCrossRefGoogle Scholar
  11. Global Initiative for Chronic Obstructive Lung Disease (GOLD). (2010). Global strategy for diagnosis, management, and prevention of COPD (update), http://www.goldcopd.org/guidelines-global-strategy-for-diagnosis-management.html
  12. Jeppsson, J. O., & Franzén, B. (1982). Typing of genetic variants of alpha-1 antitrypsin by electrofocusing. Clinical Chemistry, 28, 219–225.PubMedGoogle Scholar
  13. Kaczor, M. P., Sanak, M., Libura-Twardowska, M., & Szczeklik, A. (2007). The prevalence of alpha-1-antitrypsin deficiency in a representative population sample from Poland. Respiratory Medicine, 101, 2520–2525.PubMedCrossRefGoogle Scholar
  14. Laurell, C. B., & Sveger, T. (1975). Mass screening of newborn Swedish infants for alpha-1 antitrypsin deficiency. American Journal of Human Genetics, 27, 213–217.PubMedGoogle Scholar
  15. McDade, T. W., Williams, S., & Snodgrass, J. J. (2007). What a drop can do: Dried blood spots as a minimally invasive method for integrating biomarkers into population-based research. Demography, 44, 899–925.PubMedCrossRefGoogle Scholar
  16. Ortiz-Pallardo, M. E., Ko, Y., Sachinidis, A., Vetter, H., Fischer, H. P., & Zhou, H. (2000). Detection of alpha-1 antitrypsin PiZ individuals by SSCP and DNA sequencing in formalin-fixed and paraffin-embedded tissue: A comparison with immunohistochemical analysis. Journal of Hepatology, 32, 406–411.PubMedCrossRefGoogle Scholar
  17. Rodriguez, F., Jardí, R., Costa, X., Cotrina, M., Galimany, R., Vidal, R., & Miravitlles, M. (2002). Rapid screening for alpha-1 antitrypsin deficiency in patients with chronic obstructive pulmonary disease using dried blood specimens. American Journal of Respiratory and Critical Care Medicine, 166, 814–817.PubMedCrossRefGoogle Scholar
  18. Snyder, M. R., Katzmann, J. A., Butz, M. L., Wiley, C., Yang, P., Dawson, D. B., Halling, K. C., Highsmith, W. E., & Thibodeau, S. N. (2006). Diagnosis of alpha-1 antitrypsin deficiency: An algorithm of quantification, genotyping, and phenotyping. Clinical Chemistry, 52, 2236–2242.PubMedCrossRefGoogle Scholar
  19. Stolk, J., Seersholm, N., & Kalsheker, N. (2006). Alpha-1 antitrypsin deficiency: Current perspective on research, diagnosis, and management. International Journal of COPD, 1, 151–160.PubMedCrossRefGoogle Scholar
  20. Tazelaar, J. P., Friedman, K. J., Kline, R. S., Guthrie, M. L., & Farber, R. A. (1992). Detection of alpha-1 antitrypsin Z and S mutations by polymerase chain reaction-mediated site-directed mutagenesis. Clinical Chemistry, 38, 1486–1488.PubMedGoogle Scholar
  21. Zorzetto, M., Russi, E., Senn, O., Imboden, M., Ferrarotti, I., Tinelli, C., Campo, I., Ottaviani, S., Scabini, R., von Eckardstein, A., Berger, W., Brändli, O., Rochat, T., Luisetti, M., Probst-Hensch, N., & SAPALDIA Team. (2008). SERPINA1 gene variants in individuals from the general population with reduced alpha-1 antitrypsin concentrations. Clinical Chemistry, 54, 1331–1338.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • R. Struniawski
    • 1
  • A. Szpechcinski
    • 1
  • B. Poplawska
    • 1
  • M. Skronski
    • 1
  • J. Chorostowska-Wynimko
    • 1
  1. 1.Laboratory of Molecular Diagnostics and ImmunologyNational Institute of Tuberculosis and Lung DiseasesWarsawPoland

Personalised recommendations