Skip to main content

Influence of Sera from Interstitial Lung Disease Patients on Angiogenic Activity of Mononuclear Cells

  • Conference paper
  • First Online:
Book cover Respiratory Regulation - The Molecular Approach

Abstract

Chronic inflammation stimulates of neovascularization. The aim of this study was to evaluate the effect of sera from interstitial lung diseases (ILD) patients on angiogenic capabilities of different subsets of mononuclear cells. Serum samples were obtained from 22 patients with sarcoidosis, 20 with hypersensitivity pneumonitis, 20 with idiopathic pulmonary fibrosis, 9 with systemic sclerosis, 6 with pulmonary Langerhans cells histiocytosis, and from 20 healthy volunteers. Animal model of leukocyte induced angiogenesis assay was used as an angiogenic test. The pattern of angiogenic reaction was different in different diseases. Sera from systemic sclerosis and pulmonary Langerhans cells histiocytosis patients exerted inhibitory effects on angiogenesis, but sera from sarcoidosis, hypersensitivity pneumonitis, and idiopathic pulmonary fibrosis patients stimulated angiogenesis. Sera from sarcoidosis and pulmonary Langerhans cells histiocytosis primed monocytes for the production of angiogenic factors. The number of microvessels created after incubation of mononuclear cells depleted of monocytes with sera from systemic sclerosis patients significantly decreased. We conclude that the role of monocytes in the modulation of angiogenesis varies depending on the type of ILD. Sera from sarcoidosis stimulate and from pulmonary Langerhans cells histiocytosis patients inhibit neovascularization induced by monocyte mediators. Sera from systemic sclerosis inhibit angiogenesis induced by lymphocyte products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antoniou, K. M., Tzouvelekis, A., Alexandrakis, M. G., Sfiridaki, K., Tsiligianni, I., Rachiotis, G., Tzanakis, N., Bouros, D., Milic-Emili, J., & Siafakas, N. M. (2006). Different angiogenic activity in pulmonary sarcoidosis and idiopathic pulmonary fibrosis. Chest, 130(4), 982–988.

    Article  PubMed  Google Scholar 

  • ARA. Subcommittee for scleroderma criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee. (1980). Preliminary criteria for the classification of systemic sclerosis (scleroderma). Arthritis and Rheumatism, 23(5), 581–590.

    Article  Google Scholar 

  • ATS/ERS. (2002). International multidisciplinary consensus classification of the idiopathic interstitial pneumonias. American Journal of Respiratory and Critical Care Medicine, 165(3), 277–304.

    Google Scholar 

  • Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407(6801), 249–257.

    Article  PubMed  CAS  Google Scholar 

  • Ebina, M., Shimizukawa, M., Shibata, N., Kimura, Y., Suzuki, T., Endo, M., Sasano, H., Kondo, T., & Nukiwa, T. (2004). Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 169(11), 1203–1208.

    Article  PubMed  Google Scholar 

  • Girard, M., Israël-Assayag, E., & Cormier, Y. (2004). Pathogenesis of hypersensitivity pneumonitis. Current Opinion in Allergy and Clinical Immunology, 4(2), 93–98.

    Article  PubMed  Google Scholar 

  • Griffioen, A. W., & Molema, G. (2000). Angiogenesis: Potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacological Reviews, 52(2), 237–268.

    PubMed  CAS  Google Scholar 

  • Herrick, A. L. (2000). Vascular function in systemic sclerosis. Current Opinion in Rheumatology, 12(6), 527–533.

    Article  PubMed  CAS  Google Scholar 

  • Hirshoren, N., Neuman, T., Gross, M., & Eliashar, R. (2010). Angiogenesis in chronic rhinosinusitis with nasal polyps and in antrochoanal polyps. Inflammation Research, 60(4), 321–327.

    Article  PubMed  Google Scholar 

  • Hunninghake, G. W., Costabel, U., Ando, M., Baughman, R., Cordier, J. F., du Bois, R., Eklund, A., Kitaichi, M., Lynch, J., Rizzato, G., Rose, C., Selroos, O., Semenzato, G., & Sharma, O. P. (1999). ATS/ERS/WASOG statement on sarcoidosis. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases, 16(2), 149–173.

    PubMed  CAS  Google Scholar 

  • Kambouchner, M., Basset, F., Marchal, J., Uhl, J. F., Hance, A. J., & Soler, P. (2002). Three-dimensional characterization of pathologic lesions in pulmonary Langerhans cell histiocytosis. American Journal of Respiratory and Critical Care Medicine, 166(11), 1483–1490.

    Article  PubMed  Google Scholar 

  • Keane, M. P., & Strieter, R. M. (2002). The importance of balanced pro-inflammatory and anti-inflammatory mechanisms in diffuse lung disease. Respiratory Research, 3(1), 5–11.

    Article  PubMed  Google Scholar 

  • Keane, M. P., Arenberg, D. A., Lynch, J. P., 3rd, Whyte, R. I., Iannettoni, M. D., Burdick, M. D., Wilke, C. A., Morris, S. B., Glass, M. C., DiGiovine, B., Kunkel, S. L., & Strieter, R. M. (1997). The CXC chemokines, IL-8 and IP-10, regulate angiogenic activity in idiopathic pulmonary fibrosis. The Journal of Immunology, 159(3), 1437–1443.

    PubMed  CAS  Google Scholar 

  • Keane, M. P., Belperio, J. A., Burdick, M. D., Lynch, J. P., Fishbein, M. C., & Strieter, R. M. (2001). ENA-78 is an important angiogenic factor in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 164(12), 2239–2242.

    PubMed  CAS  Google Scholar 

  • Lingen, M. W. (2001). Role of leukocytes and endothelial cells in the development of angiogenesis in inflammation and wound healing. Archives of Pathology & Laboratory Medicine, 125(1), 67–71.

    CAS  Google Scholar 

  • Lynch, J. P., 3rd, Standiford, T. J., Rolfe, M. W., Kunkel, S. L., & Strieter, R. M. (1992). Neutrophilic alveolitis in idiopathic pulmonary fibrosis. The role of interleukin-8. The American Review of Respiratory Disease, 145(6), 1433–1439.

    PubMed  Google Scholar 

  • Mackiewicz, Z., Sukura, A., Povilenaité, D., Ceponis, A., Virtanen, I., Hukkanen, M., & Konttinen, Y. T. (2002). Increased but imbalanced expression of VEGF and its receptors has no positive effect on angiogenesis in systemic sclerosis skin. Clinical and Experimental Rheumatology, 20(5), 641–646.

    PubMed  CAS  Google Scholar 

  • Majewski, S., Skopinska-Rozewska, E., Jablonska, S., Polakowski, I., Pawinska, M., Marczak, M., & Szmurlo, A. (1985). Modulatory effect of sera from scleroderma patients on lymphocyte-induced angiogenesis. Arthritis and Rheumatism, 28(10), 1133–1139.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, K. C., Kaminski, M. J., Calhoun, W. J., & Auerbach, R. (1989). Studies of bronchoalveolar lavage cells and fluids in pulmonary sarcoidosis. I Enhanced capacity of bronchoalveolar lavage cells from patients with pulmonary sarcoidosis to induce angiogenesis in vivo. The American Review of Respiratory Disease, 140(5), 1446–1449.

    Article  PubMed  CAS  Google Scholar 

  • Navarro, C., Ruiz, V., Gaxiola, M., Carrillo, G., & Selman, M. (2003). Angiogenesis in hypersensitivity pneumonitis. Archives of Physiology and Biochemistry, 111(4), 365–368.

    Article  PubMed  CAS  Google Scholar 

  • Okabe, T., & Takaku, F. (1986). A macrophage factor that stimulates the proliferation of vascular endothelial cells. Biochemical and Biophysical Research Communications, 134(1), 344–350.

    Article  PubMed  CAS  Google Scholar 

  • Pepper, M. S., Mandriota, S. J., Vassalli, J. D., Orci, L., & Montesano, R. (1996). Angiogenesis-regulating cytokines: Activities and interactions. Current Topics in Microbiology and Immunology, 213(Pt 2), 31–67.

    Article  PubMed  CAS  Google Scholar 

  • Renzoni, E. A., Walsh, D. A., Salmon, M., Wells, A. U., Sestini, P., Nicholson, A. G., Veeraraghavan, S., Bishop, A. E., Romanska, H. M., Pantelidis, P., Black, C. M., & Du Bois, R. M. (2003). Interstitial vascularity in fibrosing alveolitis. American Journal of Respiratory and Critical Care Medicine, 167(3), 438–443.

    Article  PubMed  Google Scholar 

  • Semenza, G. L. (2007). Vasculogenesis, angiogenesis, and arteriogenesis: Mechanisms of blood vessel formation and remodeling. Journal of Cellular Biochemistry, 102(4), 840–847.

    Article  PubMed  CAS  Google Scholar 

  • Sidky, Y. A., & Auerbach, R. (1975). Lymphocyte-induced angiogenesis: A quantitative and sensitive assay for the graft-versus-host reaction. The Journal of Experimental Medicine, 141(5), 1084–1101.

    Article  PubMed  CAS  Google Scholar 

  • Simler, N. R., Brenchley, P. E., & Horrocks, A. W. (2004). Angiogenic cytokines in patients with idiopathic interstitial pneumonia. Thorax, 59(7), 581–585.

    Article  PubMed  CAS  Google Scholar 

  • Tolnay, E., Kuhnen, C., Voss, B., Wiethege, T., & Müller, K. M. (1998). Expression and localization of vascular endothelial growth factor and its receptor fit in pulmonary sarcoidosis. Virchows Archiv, 432(1), 61–65.

    Article  PubMed  CAS  Google Scholar 

  • Uebelhoer, M., Bewig, B., Sternberg, K., Rabe, K., Nowak, D., Magnussen, H., & Barth, J. (1995). Alveolar macrophages from bronchoalveolar lavage of patients with pulmonary histiocytosis X: Determination of phenotypic and functional changes. Lung, 173(3), 187–195.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, N., Anand-Apte, B., Lee, M., Sasaki, T., Fukai, N., Shapiro, R., Que, I., Lowik, C., Timpl, R., & Olsen, B. R. (1999). Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. The EMBO Journal, 18(16), 4414–4423.

    Article  PubMed  CAS  Google Scholar 

  • Zielonka, T. M., Demkow, U., Filewska, M., Radzikowska, E., Bialas, B., Korczynski, P., SzopiÅ„ski, J., Soszka, A., & Skopinska-Rozewska, E. (2007). Angiogenic activity of sera from interstitial lung diseases patients to IL-6, IL-8, IL-12 and TNFα serum level. Central European Journal of Immunology, 32(1), 53–60.

    CAS  Google Scholar 

  • Zielonka, T. M., Demkow, U., Filewska, M., Bialas, B., Zycinska, K., Radzikowska, E., Wardyn, A. K., & Skopinska-Rozewska, E. (2010). Angiogenic activity of sera from extrinsic allergic alveolitis patients in relation to clinical, radiological, and functional pulmonary changes. Lung, 188(5), 375–380.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by an internal grant of the Institute of Tuberculosis and Lung Diseases in Warsaw.

Conflicts of interest: No conflict of interest was declared with relation to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Zielonka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Zielonka, T.M. et al. (2013). Influence of Sera from Interstitial Lung Disease Patients on Angiogenic Activity of Mononuclear Cells. In: Pokorski, M. (eds) Respiratory Regulation - The Molecular Approach. Advances in Experimental Medicine and Biology, vol 756. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4549-0_18

Download citation

Publish with us

Policies and ethics