Influence of Sera from Interstitial Lung Disease Patients on Angiogenic Activity of Mononuclear Cells

  • T. M. Zielonka
  • K. Zycinska
  • E. Radzikowska
  • M. Filewska
  • B. Bialas
  • M. H. Obrowski
  • E. Skopinska-Rozewska
  • U. Demkow
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 756)


Chronic inflammation stimulates of neovascularization. The aim of this study was to evaluate the effect of sera from interstitial lung diseases (ILD) patients on angiogenic capabilities of different subsets of mononuclear cells. Serum samples were obtained from 22 patients with sarcoidosis, 20 with hypersensitivity pneumonitis, 20 with idiopathic pulmonary fibrosis, 9 with systemic sclerosis, 6 with pulmonary Langerhans cells histiocytosis, and from 20 healthy volunteers. Animal model of leukocyte induced angiogenesis assay was used as an angiogenic test. The pattern of angiogenic reaction was different in different diseases. Sera from systemic sclerosis and pulmonary Langerhans cells histiocytosis patients exerted inhibitory effects on angiogenesis, but sera from sarcoidosis, hypersensitivity pneumonitis, and idiopathic pulmonary fibrosis patients stimulated angiogenesis. Sera from sarcoidosis and pulmonary Langerhans cells histiocytosis primed monocytes for the production of angiogenic factors. The number of microvessels created after incubation of mononuclear cells depleted of monocytes with sera from systemic sclerosis patients significantly decreased. We conclude that the role of monocytes in the modulation of angiogenesis varies depending on the type of ILD. Sera from sarcoidosis stimulate and from pulmonary Langerhans cells histiocytosis patients inhibit neovascularization induced by monocyte mediators. Sera from systemic sclerosis inhibit angiogenesis induced by lymphocyte products.


Angiogenesis Chronic inflammation Interstitial lung disease Lymphocytes Monocytes 



Supported by an internal grant of the Institute of Tuberculosis and Lung Diseases in Warsaw.

Conflicts of interest: No conflict of interest was declared with relation to this work.


  1. Antoniou, K. M., Tzouvelekis, A., Alexandrakis, M. G., Sfiridaki, K., Tsiligianni, I., Rachiotis, G., Tzanakis, N., Bouros, D., Milic-Emili, J., & Siafakas, N. M. (2006). Different angiogenic activity in pulmonary sarcoidosis and idiopathic pulmonary fibrosis. Chest, 130(4), 982–988.PubMedCrossRefGoogle Scholar
  2. ARA. Subcommittee for scleroderma criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee. (1980). Preliminary criteria for the classification of systemic sclerosis (scleroderma). Arthritis and Rheumatism, 23(5), 581–590.CrossRefGoogle Scholar
  3. ATS/ERS. (2002). International multidisciplinary consensus classification of the idiopathic interstitial pneumonias. American Journal of Respiratory and Critical Care Medicine, 165(3), 277–304.Google Scholar
  4. Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407(6801), 249–257.PubMedCrossRefGoogle Scholar
  5. Ebina, M., Shimizukawa, M., Shibata, N., Kimura, Y., Suzuki, T., Endo, M., Sasano, H., Kondo, T., & Nukiwa, T. (2004). Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 169(11), 1203–1208.PubMedCrossRefGoogle Scholar
  6. Girard, M., Israël-Assayag, E., & Cormier, Y. (2004). Pathogenesis of hypersensitivity pneumonitis. Current Opinion in Allergy and Clinical Immunology, 4(2), 93–98.PubMedCrossRefGoogle Scholar
  7. Griffioen, A. W., & Molema, G. (2000). Angiogenesis: Potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacological Reviews, 52(2), 237–268.PubMedGoogle Scholar
  8. Herrick, A. L. (2000). Vascular function in systemic sclerosis. Current Opinion in Rheumatology, 12(6), 527–533.PubMedCrossRefGoogle Scholar
  9. Hirshoren, N., Neuman, T., Gross, M., & Eliashar, R. (2010). Angiogenesis in chronic rhinosinusitis with nasal polyps and in antrochoanal polyps. Inflammation Research, 60(4), 321–327.PubMedCrossRefGoogle Scholar
  10. Hunninghake, G. W., Costabel, U., Ando, M., Baughman, R., Cordier, J. F., du Bois, R., Eklund, A., Kitaichi, M., Lynch, J., Rizzato, G., Rose, C., Selroos, O., Semenzato, G., & Sharma, O. P. (1999). ATS/ERS/WASOG statement on sarcoidosis. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases, 16(2), 149–173.PubMedGoogle Scholar
  11. Kambouchner, M., Basset, F., Marchal, J., Uhl, J. F., Hance, A. J., & Soler, P. (2002). Three-dimensional characterization of pathologic lesions in pulmonary Langerhans cell histiocytosis. American Journal of Respiratory and Critical Care Medicine, 166(11), 1483–1490.PubMedCrossRefGoogle Scholar
  12. Keane, M. P., & Strieter, R. M. (2002). The importance of balanced pro-inflammatory and anti-inflammatory mechanisms in diffuse lung disease. Respiratory Research, 3(1), 5–11.PubMedCrossRefGoogle Scholar
  13. Keane, M. P., Arenberg, D. A., Lynch, J. P., 3rd, Whyte, R. I., Iannettoni, M. D., Burdick, M. D., Wilke, C. A., Morris, S. B., Glass, M. C., DiGiovine, B., Kunkel, S. L., & Strieter, R. M. (1997). The CXC chemokines, IL-8 and IP-10, regulate angiogenic activity in idiopathic pulmonary fibrosis. The Journal of Immunology, 159(3), 1437–1443.PubMedGoogle Scholar
  14. Keane, M. P., Belperio, J. A., Burdick, M. D., Lynch, J. P., Fishbein, M. C., & Strieter, R. M. (2001). ENA-78 is an important angiogenic factor in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 164(12), 2239–2242.PubMedGoogle Scholar
  15. Lingen, M. W. (2001). Role of leukocytes and endothelial cells in the development of angiogenesis in inflammation and wound healing. Archives of Pathology & Laboratory Medicine, 125(1), 67–71.Google Scholar
  16. Lynch, J. P., 3rd, Standiford, T. J., Rolfe, M. W., Kunkel, S. L., & Strieter, R. M. (1992). Neutrophilic alveolitis in idiopathic pulmonary fibrosis. The role of interleukin-8. The American Review of Respiratory Disease, 145(6), 1433–1439.PubMedGoogle Scholar
  17. Mackiewicz, Z., Sukura, A., Povilenaité, D., Ceponis, A., Virtanen, I., Hukkanen, M., & Konttinen, Y. T. (2002). Increased but imbalanced expression of VEGF and its receptors has no positive effect on angiogenesis in systemic sclerosis skin. Clinical and Experimental Rheumatology, 20(5), 641–646.PubMedGoogle Scholar
  18. Majewski, S., Skopinska-Rozewska, E., Jablonska, S., Polakowski, I., Pawinska, M., Marczak, M., & Szmurlo, A. (1985). Modulatory effect of sera from scleroderma patients on lymphocyte-induced angiogenesis. Arthritis and Rheumatism, 28(10), 1133–1139.PubMedCrossRefGoogle Scholar
  19. Meyer, K. C., Kaminski, M. J., Calhoun, W. J., & Auerbach, R. (1989). Studies of bronchoalveolar lavage cells and fluids in pulmonary sarcoidosis. I Enhanced capacity of bronchoalveolar lavage cells from patients with pulmonary sarcoidosis to induce angiogenesis in vivo. The American Review of Respiratory Disease, 140(5), 1446–1449.PubMedCrossRefGoogle Scholar
  20. Navarro, C., Ruiz, V., Gaxiola, M., Carrillo, G., & Selman, M. (2003). Angiogenesis in hypersensitivity pneumonitis. Archives of Physiology and Biochemistry, 111(4), 365–368.PubMedCrossRefGoogle Scholar
  21. Okabe, T., & Takaku, F. (1986). A macrophage factor that stimulates the proliferation of vascular endothelial cells. Biochemical and Biophysical Research Communications, 134(1), 344–350.PubMedCrossRefGoogle Scholar
  22. Pepper, M. S., Mandriota, S. J., Vassalli, J. D., Orci, L., & Montesano, R. (1996). Angiogenesis-regulating cytokines: Activities and interactions. Current Topics in Microbiology and Immunology, 213(Pt 2), 31–67.PubMedCrossRefGoogle Scholar
  23. Renzoni, E. A., Walsh, D. A., Salmon, M., Wells, A. U., Sestini, P., Nicholson, A. G., Veeraraghavan, S., Bishop, A. E., Romanska, H. M., Pantelidis, P., Black, C. M., & Du Bois, R. M. (2003). Interstitial vascularity in fibrosing alveolitis. American Journal of Respiratory and Critical Care Medicine, 167(3), 438–443.PubMedCrossRefGoogle Scholar
  24. Semenza, G. L. (2007). Vasculogenesis, angiogenesis, and arteriogenesis: Mechanisms of blood vessel formation and remodeling. Journal of Cellular Biochemistry, 102(4), 840–847.PubMedCrossRefGoogle Scholar
  25. Sidky, Y. A., & Auerbach, R. (1975). Lymphocyte-induced angiogenesis: A quantitative and sensitive assay for the graft-versus-host reaction. The Journal of Experimental Medicine, 141(5), 1084–1101.PubMedCrossRefGoogle Scholar
  26. Simler, N. R., Brenchley, P. E., & Horrocks, A. W. (2004). Angiogenic cytokines in patients with idiopathic interstitial pneumonia. Thorax, 59(7), 581–585.PubMedCrossRefGoogle Scholar
  27. Tolnay, E., Kuhnen, C., Voss, B., Wiethege, T., & Müller, K. M. (1998). Expression and localization of vascular endothelial growth factor and its receptor fit in pulmonary sarcoidosis. Virchows Archiv, 432(1), 61–65.PubMedCrossRefGoogle Scholar
  28. Uebelhoer, M., Bewig, B., Sternberg, K., Rabe, K., Nowak, D., Magnussen, H., & Barth, J. (1995). Alveolar macrophages from bronchoalveolar lavage of patients with pulmonary histiocytosis X: Determination of phenotypic and functional changes. Lung, 173(3), 187–195.PubMedCrossRefGoogle Scholar
  29. Yamaguchi, N., Anand-Apte, B., Lee, M., Sasaki, T., Fukai, N., Shapiro, R., Que, I., Lowik, C., Timpl, R., & Olsen, B. R. (1999). Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. The EMBO Journal, 18(16), 4414–4423.PubMedCrossRefGoogle Scholar
  30. Zielonka, T. M., Demkow, U., Filewska, M., Radzikowska, E., Bialas, B., Korczynski, P., Szopiński, J., Soszka, A., & Skopinska-Rozewska, E. (2007). Angiogenic activity of sera from interstitial lung diseases patients to IL-6, IL-8, IL-12 and TNFα serum level. Central European Journal of Immunology, 32(1), 53–60.Google Scholar
  31. Zielonka, T. M., Demkow, U., Filewska, M., Bialas, B., Zycinska, K., Radzikowska, E., Wardyn, A. K., & Skopinska-Rozewska, E. (2010). Angiogenic activity of sera from extrinsic allergic alveolitis patients in relation to clinical, radiological, and functional pulmonary changes. Lung, 188(5), 375–380.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • T. M. Zielonka
    • 1
  • K. Zycinska
    • 1
  • E. Radzikowska
    • 2
  • M. Filewska
    • 3
  • B. Bialas
    • 3
  • M. H. Obrowski
    • 1
  • E. Skopinska-Rozewska
    • 4
  • U. Demkow
    • 5
  1. 1.Department of Family MedicineMedical University of WarsawWarsawPoland
  2. 2.Department of Lung DiseasesInstitute of Tuberculosis and Lung DiseasesWarsawPoland
  3. 3.Department of Laboratory Diagnostics and ImmunologyInstitute of Tuberculosis and Lung DiseasesWarsawPoland
  4. 4.Department of Pathology, Biostructure CenterMedical University of WarsawWarsawPoland
  5. 5.Department of Laboratory Diagnostics and Clinical Immunology of the Developmental AgeMedical University of WarsawWarsawPoland

Personalised recommendations